Содержание
sg3525 — описание, принцип работы, схема включения
Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .
Схема подключения видна на рисунке 5.
Рисунок 5. Схема подключения ШИМ sg3525
Зарядка от USB-порта
Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта. При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:
На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.
Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:
Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:
Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:
- паяльник;
- припой;
- флюс;
- тестер;
- пинцет;
- различные отвертки и нож.
Интересный материал про изготовление своими руками, рекомендуем к просмотру
Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.
Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).
Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.
Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.
В завершении нужно установить зарядный ток. Для этого необходимо разорвать цепь, соединяющую VD1 и плюсовую полярность аккумулятора. Подключаем тестер таким образом, чтобы его плюс соединялся с диодом, а минус — с аккумулятором. Выставляем режим измерения тока (200 мА).
Включаем в есть, после чего должен загореться светодиод, конечно, если все сделано правильно. Затем устанавливаем необходимый ток зарядки (100 мА), путем изменения сопротивления на резисторе R1. Проводим данную процедуру и для второго аккумулятора AA.
Еще одно интересное видео на это тему
Включение микросхемы
А теперь необходимо рассмотреть описание, принцип работы и схемы включения UC3842. На блоках питания обычно не указываются параметры микросхемы, поэтому нужно обращаться к специальной литературе – даташитам. Очень часто можно встретить схемы, которые рассчитаны на питание от сети переменного тока 110-120 В. Но благодаря всего нескольким доработкам можно увеличить напряжение питания до 220 В.
Для этого выполняются такие изменения в схеме блока питания на UC3842:
- Заменяется диодная сборка, которая находится на входе источника питания. Необходимо, чтобы новый диодный мост работал при обратном напряжении 400 В и больше.
- Заменяется электролитический конденсатор, который находится в цепи питания и служит фильтром. Устанавливается после диодного моста. Необходимо поставить аналогичный, но с рабочим напряжением 400 В и выше.
- Увеличивается номинальное сопротивление резисторов в цепи питания до 80 кОм.
- Проверить, может ли силовой транзистор работать при напряжении между стоком и истоком 600 В. Можно использовать транзисторы BUZ90.
В статье приведена схема блока питания на UC3842. Интегральная схема имеет ряд особенностей, которые обязательно нужно учитывать при проектировании и ремонте блоков питания.
Особенности работы микросхемы (adsbygoogle = window.adsbygoogle || []).push({});
Если имеется короткое замыкание в цепи вторичной обмотки, то при пробое диодов или конденсаторов начинает возрастать потеря электроэнергии в импульсном трансформаторе. Может получиться и так, что для нормального функционирования микросхемы не хватает напряжения. При работе слышно характерное «цыканье», которое исходит от импульсного трансформатора.
Рассматривая описание, принцип работы и схему включения UC3842, сложно обойти стороной особенности ремонта. Вполне возможно, что причиной поведения трансформатора является не пробой в его обмотке, а неисправность конденсатора. Происходит это в результате выхода из строя одного или нескольких диодов, которые включаются в цепь питания. Но если произошел пробой полевого транзистора, необходимо полностью менять микросхему.
Импульсные БП на микросхеме (adsbygoogle = window.adsbygoogle || []).push({});
Для наглядности нужно рассмотреть описание работы источника питания на UC3842. Впервые она начала применяться в бытовой технике во второй половине 90-х годов. У нее явное преимущество перед всеми конкурентами – малая стоимость. Причем надежность и эффективность не уступают. Для построения полноценной схемы стабилизатора напряжения практически не требуются дополнительные компоненты. Все делается «внутренними» элементами микросхемы.
Элемент может быть выполнен в одном из двух типов корпуса – SOIC-14 или SOIC-8. Но нередко можно встретить модификации, выполненные в корпусах DIP-8. Нужно заметить, что последние цифры (8 и 14) означают количество выводов микросхемы. Правда, различий не очень много – в случае если элемент с 14-ю выводами, просто добавляются выводы для подключения массы, питания и выходного каскада. На микросхеме строятся стабилизированные источники питания импульсного типа с ШИМ-модуляцией. Обязательно для усиления сигнала используется МОП-транзистор.
Могут ли чипы представлять угрозу?
Сразу отбросим теории конспирологов в шапочках из фольги о порабощении человеческого сознания и тотальном контроле над людьми. В этой статье речь не о них.
В действительности опасность могли бы представлять хакеры
Однако сейчас чипы им не интересны: они передают сигнал на очень маленькое расстояние и не содержат важной информации в больших объемах. Для хакеров еще несколько лет куда выгоднее будет взламывать ваш компьютер или телефон
Однако если чипирование продолжит развиваться и выйдет на новый уровень, они могут в нем заинтересоваться, однако прогнозов на будущее мы дать не можем.
В любом случае не стоит бояться чипов. Научно-технический прогресс стремителен и то, что казалось нам странным раньше, теперь считается нормой. Могли ли мы несколько десятков лет назад представить, что будем просыпаться и ложиться в постель с девайсом, заменившим практически всю портативную технику? Так и в будущем вполне возможны подкожные чипы, которые постепенно придут на смену смартфонам!
Импульсные БП на микросхеме
Для наглядности нужно рассмотреть описание работы источника питания на UC3842. Впервые она начала применяться в бытовой технике во второй половине 90-х годов. У нее явное преимущество перед всеми конкурентами – малая стоимость. Причем надежность и эффективность не уступают. Для построения полноценной схемы стабилизатора напряжения практически не требуются дополнительные компоненты. Все делается «внутренними» элементами микросхемы.
Элемент может быть выполнен в одном из двух типов корпуса – SOIC-14 или SOIC-8. Но нередко можно встретить модификации, выполненные в корпусах DIP-8. Нужно заметить, что последние цифры (8 и 14) означают количество выводов микросхемы. Правда, различий не очень много – в случае если элемент с 14-ю выводами, просто добавляются выводы для подключения массы, питания и выходного каскада. На микросхеме строятся стабилизированные источники питания импульсного типа с ШИМ-модуляцией. Обязательно для усиления сигнала используется МОП-транзистор.
Как смоделировать работу микросхемы
При моделировании работы нет необходимости в выпаивании микросхемы. Но обязательно нужно выключать устройство перед началом проведения работ. Проверка схемы на UC3842 заключается в том, чтобы на нее подать напряжение от внешнего источника и оценить работу. Процедура проведения работы выглядит так:
Отключается блок питания от сети переменного тока. От внешнего источника стабилизированного напряжения и тока подается на седьмой контакт микросхемы напряжение больше 16 В. В этот момент должен произойти запуск микросхемы
Обратите внимание на то, что микросхема не начнет работать до тех пор, пока напряжение не окажется выше 16 В. Используя осциллограф или вольтметр, нужно произвести замер напряжения на восьмом выводе
На нем должно быть +5 В. Убедитесь в том, что напряжение на восьмом выводе стабильно. Если снизить напряжение источника питания ниже 16 В, то на восьмом выводе пропадет ток. Используя осциллограф, проведите замер напряжения на четвертом выводе. В том случае, если элемент исправен, на графике будут импульсы пилообразной формы. Измените напряжение источника питания – при этом частота и амплитуда сигнала на четвертом выводе останутся неизменными. Проверьте осциллографом, есть ли на шестой ножке прямоугольные импульсы.
Только в том случае, если все вышеописанные сигналы имеются и ведут себя так, как и нужно, можно говорить об исправности микросхемы. Но рекомендуется проверять исправность и выходных цепей – диод, резисторы, стабилитрон. При помощи этих элементов происходит формирование сигналов для осуществления токовой защиты. Они выходят из строя при пробое.
Одноканальный регулятор для мотора
Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.
Конструкция устройства
Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).
Принцип работы
Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.
Принципиальная электрическая схема
Материалы и детали
Необходима печатная плата размером 20×30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.
Процесс сборки
Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).
Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.
Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.
Как проверить подлинность видеокарты: простой способ
Хотите узнать как не купить поддельную видеокарту? Читайте — далее…
На этой неделе на электронную почту нашего журнала пришло интересное письмо — читатель Вадим поведал о своей недавней покупке на Joom. Он заказал видеокарту за 2 тысячи рублей, хотя ее рыночная стоимость составляла около 10 тысяч рублей. Несмотря на такой очевидный трюк с ценой он всё же решил пойти на этот шаг.
«Карта мне пришла — внешне все соответствовало действительности. Однако, запустив GPU-Z (специальное ПО для показа технических характеристик видеочипа — примечание главного редактора) я понял, что с картой что-то не так. Чтобы убедиться в этом на 100% я решил разобрать её. Тут я увидел то, что не ожидал увидеть — маркировка на чипе грубо говоря была затерта. Я конечно подозревал, что с картой будет что-то не так, но что это будет сделано так по-варварски я не ожидал. Сомнений у меня больше не осталось — Joom торгует подделками, но последнее вряд ли для кого-то будет большим сюрпризом».
Как же проверить подлинность видеокарты и не наткнуться на подделку при покупке? Об этом — далее.
Специально для Вас: Не работает Face ID на iPhone X: что делать
Проверяем подлинной видеокарты — симптомы подделки
Итак, как же уберечь себя от покупки некачественной поддельной видеокарты? Купить такую сегодня очень просто — Joom, Ali и другие китайские магазины с радостью реализуют любые подобные комплектующие доверчивому отечественному покупателю.
Первым «симптомом» того, что видеокарта поддельная служат следующие признаки:
- Искажение изображения на мониторе;
- Смена разрешения;
- Различные подёргивания и другие артефакты изображения.
Если после данной процедуры результат не изменился, необходимо прогреть процессор видеокарты — есть вероятность того, что он отошёл от платы.
Специально для Вас: Греется iPhone X при зарядке. Подсказываем решение
Признаки поддельной видеокарты
В том случае, когда изображения на мониторе нет вообще, однако, компьютер и остальные комплектующие работают исправно, подозревать в неисправности нужно именно графический адаптер. Также возможно Вам продали палёную или сгоревшую видеокарту.
Диагностика в последнем случае будет простой — прочистка контактов интерфейса и подключение подопытной к другому компьютеру. Делается это для подтверждения неисправности видеокарты.
Как подделывают видеокарты китайцы
Процесс «подделки» видеокарты довольно прост — все правки вносятся через VideoBios. Сперва меняется название видеокарты, например, GeForce GT 430 меняется на RTX 2080 Ti. Именно последним вариантом она и будет определяться в системе.
Как обнаружить поддельную видеокарту
Самым простым, но в тоже время эффективным способом обнаружения контрафактной видеокарты является утилита «GPU-Z» — она способна определить подделку практически всех видеокарт, например, графических чипов Nvidia серий G, GT, GF, GK.
Специально для Вас: Айфон показывает яблоко и не включается: что делать
Чтобы отличить настоящую карту от поддельной пользователю достаточно воспользоваться специальным ПО. Если карта поддельная в окне проверке будут различаться технические показатели: частота шины, версия PCIe и другие характеристики. Благодаря программе «GPU-Z» определить такую видеокарту не составит труда даже у начинающего пользователя…
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
Особенности работы микросхемы
Если имеется короткое замыкание в цепи вторичной обмотки, то при пробое диодов или конденсаторов начинает возрастать потеря электроэнергии в импульсном трансформаторе. Может получиться и так, что для нормального функционирования микросхемы не хватает напряжения. При работе слышно характерное «цыканье», которое исходит от импульсного трансформатора.
Рассматривая описание, принцип работы и схему включения UC3842, сложно обойти стороной особенности ремонта. Вполне возможно, что причиной поведения трансформатора является не пробой в его обмотке, а неисправность конденсатора. Происходит это в результате выхода из строя одного или нескольких диодов, которые включаются в цепь питания. Но если произошел пробой полевого транзистора, необходимо полностью менять микросхему.
Как это защищает Ваш телефон
Данные на Вашем телефоне хранятся в зашифрованном виде на диске. Ключ, который разблокирует данные, хранится в защищенной области. Когда Вы разблокируете свой телефон с помощью ПИН-кода, пароля, идентификатора лица или сенсорного идентификатора, процессор внутри защищенной зоны аутентифицирует Вас и использует Ваш ключ для дешифрования Ваших данных в памяти.
Этот ключ шифрования никогда не покидает защищенную область защитного чипа. Если злоумышленник пытается войти в систему, угадывая ПИН или пароль, защищенный чип может замедлить их и обеспечить задержку между попытками. Даже если этот человек нарушил основную операционную систему Вашего устройства, защищенный чип ограничил бы попытки доступа к Вашим ключам безопасности.
Самостоятельное изготовление автомобильного зарядного устройства
Теперь рассмотрим самые простые зарядные устройства, которые можно изготовить самому. Первым будет устройство, которое по принципиальной схеме очень сходно с описанным.
На схеме обозначено: S1 — выключатель питания (тумблер); FU1 — предохранитель на 1А; T1 — трансформатор ТН44; D1-D4 — диоды Д242; C1 — конденсатор 4000 мкФ, 25 В; A — амперметр на 10А.
Итак, для изготовления самодельного зарядного устройства понадобиться понижающий трансформатор ТС-180-2. Такие трансформаторы использовались на старых ламповых телевизорах. Его особенностью является наличие двух первичных и вторичных обмоток. При этом каждая их вторичных обмоток на выходе имеет по 6,4 В и 4,7 А. Поэтому чтобы добиться необходимых для зарядки АКБ 12,8 В, на которые способен этот трансформатор, нужно произвести последовательное соединение этих обмоток. Для этого используется короткий провод с сечением не менее 2,5 мм. кв. перемычкой соединяется не только вторичные обмотки, но и первичные.
Видео: Самое простое зарядное устройство для АКБ
Далее потребуется наличие диодного моста. Для его создания берутся 4 диода, рассчитанных на силу тока не менее 10 А. Эти диоды можно закрепить на текстолитовой пластине, а затем произвести правильное их соединение. К выходным диодам подсоединяются провода, которые устройство и будет подключаться к АКБ. На этом сборку прибора можно считать завершенной.
Теперь о правильности процесса зарядки. При подключении устройства к аккумулятору, нельзя перепутывать полярность, иначе можно вывести из строя и батарею, и прибор.
При подключении к АКБ, устройство должно быть полностью обесточено. Включать его в сеть можно только после подсоединения к батарее. Отключать от батареи его тоже следует после отключения от сети.
Сильно разряженную батарею нельзя подключать к прибору без средства, понижающего напряжение и силу тока, иначе прибор на АКБ будет подавать ток высокой силы, который может навредить батарее. В качестве понижающего средства может выступать обычная 12-вольтовая лампа, которая подсоединяется к выводным клеммам перед АКБ. Лампа при работе устройства будет гореть, тем самым частично забирая на себя напряжение и ток. Со временем, после частичной зарядки батареи, лампу из цепи можно исключить.
При зарядке периодически нужно проверять степень зарядки батареи, для чего можно воспользоваться мультиметром, вольтметром или нагрузочной вилкой.
Полностью заряженная батарея при проверке на ней напряжения должна показывать не менее 12,8 В, если значение ниже – требуется дальнейшая зарядка, для доведения этого показателя до нужного уровня.
Видео: Зарядное устройство для автомобильного аккумулятора своими руками
Поскольку данная схема не имеет защитного корпуса, не стоит оставлять устройство без присмотра во время работы.
И пусть этот прибор не обеспечивает оптимальные 13,8 В на выходе, но для подзарядки аккумулятора вполне годиться, хотя примерно через два года пользования батареей все же понадобиться выполнить ее зарядку заводским устройством, обеспечивающим все оптимальные параметры для зарядки батареи.
Принцип работы микросхемы ШИМ контроллера КА3882
Принцип работы микросхемы ШИМ контроллера рассмотрим на примере схемы импульсного блока питания компьютерного монитора SyncMaster 500В.
На рис. 3 показана схема импульсного блока питания мониторов Samsung моделей SyncMaster 500В, Samtron 5В (шасси CGB5607) с размером экрана 15″. Параметры блока питания: напряжение питания 90…264 В, 50…60 Гц; мощность потребления 85 Вт.
В качестве ШИМ контроллера используется микросхема IC601 типа КА3882. Ее выход управляет мощным полевым транзистором Q601 (SSH6N80), сток которого соединен с обмоткой 5-2 импульсного трансформатора Т601. На выходах выпрямителей во вторичной цепи формируется ряд напряжения 75, 53, 14,5,12, -12, 7 В для питания схемы видеоусилителей, строчной развертки, кадровой развертки, накала кинескопа. Схема имеет защиту от превышения напряжения питания, перегрузки по току и короткого замыкания. Схема поддерживает режим сохранения энергии согласно стандарту VESA: потребление в режиме Stand-by составляет 55 Вт, в режиме Suspend 15 Вт, в режиме Off 5 Вт.
Микросхема КА3882 состоит из генератора, усилителя ошибки, компаратора напряжения, использующего сигнал с резистора ограничения тока, пороговой схемы с гистерезисом, которая гарантирует стабильную работу в диапазоне напряжения питания 10…16 В, и выходного каскада для подключения мощного полевого транзистора. Работа микросхемы КА3882 довольно проста. При появлении на входе блока питания выпрямленного сетевого напряжения 300 В на выв. 7 IC601 через элементы R608, R609 протекает стартовый ток и включаются узлы микросхемы. Внутренний генератор начинает вырабатывать импульсы с частотой, определяемой цепочкой R607, С605, подключенной к выв. 4 IC601. С выв. 6 IC601 импульсы через резистор R610 и BD601 поступают на затвор ключевого транзистора Q601, обеспечивая импульсный ток в первичной обмотке 5-2 силового трансформатора Т601. Это приводит к появлению напряжения в обмотке 7-8 трансформатора, которое после выпрямления диодом D610 и сглаживания на емкости С613 поступает на выв. 7 IC601, обеспечивая ее питание в рабочем режиме
Важное свойство микросхемы КА3882: она не включается, если на выв. 7 напряжение меньше 10 В, и выключается, когда напряжение выше 16В (аварийный режим)
Дополнительную защиту обеспечивает цепочка элементов D611, С614, R622, R620, ZD602 и триггерная схема Q602, Q603, которая останавливает работу микросхемы в случае перенапряжений. В случае коротких замыканий во вторичных цепях источника питания, например при выходе из строя одного из выпрямительных диодов, пробоя электролитических конденсаторов или при неисправности в одном из блоков монитора, напряжения обмотки 7-8 не хватает для работы микросхемы ШИМ контроллера, и она выключается до момента, пока конденсатор С613 не зарядится до напряжения ее включения (более 10 В). Далее микросхема ШИМ контроллер снова включается и немедленно выключается. Интервал между включениями составляет примерно 1…2 с, при этом слышны слабые щелчки из импульсного трансформатора блока питания. Такой режим импульсного блока питания обеспечивает надежную защиту ключевого транзистора от перегрузки по току напряжением, снимаемым с резистора R614. Выходные напряжения блока питания стабилизируются через оптопару IC602 (CQY80NG). Эта часть схемы включает в себя также прецизионный источник опорного напряжения IC603 (TL431) и переменный резистор VR601 для установки номинальных напряжений. Изменение нагрузки во вторичной цепи управляет засветкой фототранзистора оптопары IC603, в результате происходит управление длительностью открытого состояния ключа.
Назначение выводов микросхемы (краткий обзор)
Для начала нужно рассмотреть назначение всех выводов микросхемы. Описание UC3842 выглядит таким образом:
На первый вывод микросхемы подается напряжение, необходимое для осуществления обратной связи. Например, если понизить на нем напряжение до 1 В или ниже, на выводе 6 начнет существенно уменьшаться время импульса.
Второй вывод тоже необходим для создания обратной связи. Однако, в отличие от первого, на него нужно подавать напряжение более 2,5 В, чтобы сократилась длительность импульса. Мощность при этом также снижается.
Если на третий вывод подать напряжение более 1 В, то импульсы прекратят появляться на выходе микросхемы.
К четвертому выводу подключается переменный резистор – с его помощью можно задать частоту импульсов. Между этим выводом и массой включается электролитический конденсатор.
Пятый вывод – общий.
С шестого вывода снимаются ШИМ-импульсы.
Седьмой вывод предназначен для подключения питания в диапазоне 16..34 В. Встроена защита от перенапряжения
Обратите внимание на то, что при напряжении ниже 16 В микросхема работать не будет.
Чтобы осуществить стабилизацию частоты импульсов, используется специальное устройство, которое подает на восьмой вывод +5 В.
Прежде чем рассматривать практические конструкции, нужно внимательно изучить описание, принцип работы и схемы включения UC3842.