Лабораторный автотрансформатор (латр)

Содержание

Что такое лабораторный автотрансформатор (ЛАТР)

Очень часто в среде электриков и электронщиков звучит аббревиатура ЛАТР. Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то конечного значения, которое, конечно же, зависело от крутизны блока питания. Согласитесь, очень удобная штука. Но есть один минус – он нам выдает только постоянное напряжение. Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?

ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем менять при необходимости напряжение на выходе ЛАТРа.

ЛАТР (Лабораторный автотрансформатор)

Что такое ЛАТР

Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то значения, которое, конечно же, зависит от крутизны блока питания. Согласитесь, очень удобная штука. Но есть один минус – он нам выдает только постоянное напряжение.

Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?

ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем менять при необходимости напряжение на выходе ЛАТРа.

Трехфазный ЛАТР – это три однофазных ЛАТРа, запиханные в один корпус.

Описание ЛАТРа РЕСАНТА

Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.

Сверху наш ЛАТР выглядит вот так:

Мы видим крутилку, с помощью которой можем выставлять нужное нам напряжение.

На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из розетки 220 Вольт, ну а с клемм справа выводим нужное нам напряжение, покрутив крутилку в нужном направлении ;-).

Работа ЛАТРа на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим крутилку, пока не заметим слабое свечение лампочки.

Смотрим на шкалу крутилки. 35 Вольт!

А вы знаете, что в США в розетке 110 Вольт? Интересно, как бы светилась наша лампочка в США? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А вот теперь посмотрите, как она светится при 220 Вольтах

Дальше повышать напряжение нет смысла. Лампочку жалко.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью крутилки ЛАТРа нужное напряжение

Техника безопасности при работе с ЛАТРом

Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:

В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.

Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа, то можно увидеть, что клемма “Х” и “х” (те, которые два нижних) связаны между собой простым проводом:

То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!

В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень сильно, так как через меня прошли бы полноценные 220 Вольт.

Разделительный трансформатор и ЛАТР

Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:

Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа.

Заключение

ЛАТР – прибор очень полезный. Я бы посоветовал начинающему электронщику ЛАТР на 500 ВА. Такие ЛАТРы очень компактные и удобные. Работает ЛАТР по принципу трансформатора. Чем меньше витков во вторичной обмотке, тем меньше напряжение на выходе. Когда мы крутим крутилку, мы добавляем витки, а следовательно и напряжение. Принцип работы трансформатора подробно рассмотрен в этой статейке. Думаю, говорить про применение ЛАТРа нет смысла, так как он используется везде, где надо понизить переменное напряжения или даже чуточку его повысить.

Автотрансформаторы

Трансформатор является устройством, предназначенным для преобразования входного тока одного напряжения в выходной тока иного напряжения в условиях постоянной частоты и мощности. Преобразование тока происходит благодаря явлению электромагнитной индукции — возникновение электрического тока при изменении магнитного потока, проходящего через контур.

Конструктивно трансформатор состоит из магнитопровода — сердечника и катушек (обмоток) изолированного провода. Для изготовления магнитопровода используется магнитный материал. Обмотка трансформаторов подразделяется на первичную, подключаемую к сети, и вторичную, подключаемую к электрическому прибору. Вторичных обмоток может быть не одна, а несколько, в этом случае трансформатор является многообмоточным. Первичная и вторичная обмотки могут быть соединены между собой напрямую (иметь электрическую связь), тогда трансформатор называется автотрансформатором.

Рис 1. Автотрансформатор силовой сухой TDGC2-5K

Объединенная обмотка автотрансформатора обладает не менее, чем тремя выводами. При подключении к различным выводам можно получить различные напряжения. Использование автотрансформаторов является более эффективным и дешевым по сравнению с многообмоточными трансформаторами при небольших коэффициентах трансформации (в диапазоне от 1 до 2).

Автотрансформатор обладает очень большим коэффициентом полезного действия (КПД), доходящим до 99%. Происходит это благодаря тому, что преобразованию подвергается не вся мощность, а лишь ее часть. При небольшом отличии входного и выходного напряжения — это является значительным преимуществом, так как обеспечивает минимальные потери на преобразовании.

Однако автотрансформаторы не подходят для использования при больших коэффициентах трансформации, так как не обладают возможностью создания «гальванической развязки» из-за отсутствия гальванического обособления первичной и вторичной обмоток посредством изоляции. Это может привести к возникновению короткого замыкания или пробою автотрансформатора.

Лабораторные автотрансформаторы регулируемые (ЛАТРы)

Автотрансформаторы, применяемые в низковольтных сетях в качестве лабораторных регуляторов напряжения невысокой мощности, называются ЛАТРы. Преобразование напряжения в данном случае осуществляется посредством перемещения скользящего контакта по виткам обмотки.

Рис 1. Автотрансформатор силовой сухой типа «ЛАТР»

ЛАТРы состоят из кольцеобразного ферромагнитного магнитопровода и однослойной обмотки из изолированного медного провода. ЛАТРы могут служить как понижающими, так и повышающими трансформаторами с постоянным коэффициентом трансформации благодаря специальной обмотке, имеющей несколько постоянных ответвлений. Для плавного регулирования вторичного напряжения в диапазоне от 0 до 250В медная обмотка очищается от изоляции и на ее поверхность наносится узкая дорожка для перемещения щеточного или роликового контакта.

Важно, что в лабораторном трансформаторе замыкание соседних витков не вызывает витковых замыканий, благодаря тому, что ток сети и ток нагрузки в совмещенной обмотке трансформатора близки и встречно направлены. ЛАТРы обладают номинальной мощностью от 0,5 до 7,5 кВА

ЛАТРы обладают номинальной мощностью от 0,5 до 7,5 кВА.

Особенности

Рассматривая, что такое ЛАТР, следует отметить, что это разновидность автотрансформатора. Отличается малым энергопотреблением, не требует регистра состояния. Принцип действия, которым обладает лабораторный регулирующий автотрансформатор, заключается в регулировании напряжения переменного типа однофазной (на фото слева) или трехфазной (справа) сети).

Схема LATR включает тороидальный стальной сердечник. На нем всего одна схема. В этом устройстве нет двух отдельных обмоток. Контуры выровнены. Одну часть можно отнести к виткам первичного типа, а вторую – к виткам вторичного типа. Регулирующий автотрансформатор ЛАТР имеет довольно простую схему. Пользователь может самостоятельно регулировать количество витков вторичной обмотки. Это отличает тип блока от других трансформаторов. О том, как собрать ЛАТР своими руками, мы писали здесь.

Классификация по тактико-техническим параметрам

Так как трансформаторы находят самое широкое применение в радиоэлектронных устройствах, работающих в различных условиях, то соответственно необходимо выделить трансформаторы пригодные по техническим условиям работы.

1. Область применения трансформаторов. Данным признаком определяется область применения и требования, предъявляемые к трансформаторам в данной области:

— бытового назначения. Характеризуются незначительными требованиями к условиям эксплуатации в бытовых (домашних) условиях и применяются в широковещательной аппаратуре;

— общепромышленного назначения. Трансформаторы данного типа работают, как правило, в измерительной аппаратуре, аппаратуре управления различных станков и т.д.;

— специального назначения. Трансформаторы данного типа используются, как правило, в технике военного и специального назначения. Требования, предъявляемые к ним, зависят от конкретной области использования, поэтому трансформаторы специального назначения разделяются на следующие категории по их использованию в аппаратуре: бортовой аппаратуре (авиационно и ракетной), корабельной аппаратуре (для надводных и подводных кораблей), наземной стационарной аппаратуре (различных станций), наземной транспортируемой (передвижная наземная техника) и наземная переносная аппаратура (аппаратура связи).

2. Срок службы. Этот фактор связан с предыдущими параметрами, так как область применения определяет различные требования. Под сроком службы понимается суммарное время использования трансформатора во включенном состоянии. Можно выделить следующие категории:

— длительного срока службы, длительность работы составляет от 10000 часов. Можно отнести трансформаторы бытовой техники, общепромышленного назначения и некоторые типы специального назначения;

— короткого срока службы, срок службы составляет 300 – 500 часов. К данной группе относятся трансформаторы авиационной аппаратуры, а в отдельных случаях корабельной и наземной аппаратуры;

— кратковременного использования, продолжительность эксплуатации без потери характеристик составляет порядка нескольких минут. Данную категорию составляют трансформаторы ракетной аппаратуры.

3. Температурные условия, работы трансформаторов также зависят от условий их применения. Эти условия определяют следующие величины: температура окружающей среды, рабочая температура обмоток и перегрев обмоток. Таким образом, выделяют следующие категории трансформаторов по температурным условиям:

— обычные трансформаторы, имеющие рабочую температуру не более 100-130 °С;

— высокотемпературные трансформаторы, имеющие рабочую температуру выше 130 °С.

Следует отметить, что температура окружающей среды трансформатора определяется областью его применения, а перегрев и рабочая температура определяется классом изоляции используемой в трансформаторе.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Мощность автотрансформатора

Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.

Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².

Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.

Советы и рекомендации

В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.

  • дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
  • принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
  • высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
  • газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.

Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.

Принцип устройства

Автотрансформаторы характеризуются определенным устройством и принципом действия. Их первая обмотка является частью второго контура или наоборот. Такие цепи характеризуются электромагнитной и гальванической связью. Повышающий и понижающий агрегат применяются во многих сферах деятельности человека. Причем его характеристики определяются особенностями включения обмоток.

При подключении к катушке переменного тока в сердечнике определяется магнитный поток. В каждом из существующих витков в этот момент будет индуктироваться электродвижущая сила. Причем ее величина будет идентична.

Схема автотрансформатора объясняет принцип работы агрегата. При подсоединении нагрузки вторичный электрический поток будет перемещаться по обмотке. По этому же проводнику в этот момент движется и первичный ток. Оба потока геометрически складываются. Поэтому на обмотку станет подаваться совсем незначительный электрический ток.

Устройство автотрансформатора

Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.

Двухобмоточный трансформатор и автотрансформатор

Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.

Как работает ЛАТР на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к выходным клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим регулятор, пока не заметим слабое свечение лампочки.

Смотрим на шкалу регулятора. 35 Вольт!

А вы знаете, что в США сетевое напряжение 110 Вольт? Интересно, как бы светилась тогда наша лампочка? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А теперь сравните, как она светится при 220 В

Дальше повышать напряжение нет смысла. Лампочка может перегореть.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью регулятора ЛАТРа. Ровно 110 Вольт!

Область применения

Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.

Металлургическое производство

Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.

Коммунальное хозяйство

До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.

В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.

Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.

Химическая и нефтяная промышленность

В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.

Производство техники

В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.

Учебные заведения

В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.

Что такое ЛАТР?

ЛАТР — лабораторный автотрансформатор регулируемый — прибор, предназначенный для регулирования напряжения, которое подаётся от однофазной или трехфазной сети переменного тока. Используя входное напряжение, ЛАТР его либо увеличивает, либо уменьшает. Также ЛАТР предназначен для настройки и тестирования разнообразного электрооборудования в условиях лаборатории или исследовательского центра. Работа с ним подразумевает знание и понимание основных физических законов, в частности закона Ома.

ЛАТР применяется в исследовательских целях, для тестирования оборудования переменного тока, наладки радиотехники, для тестирования высокочувствительной медицинской аппаратуры и промышленного оборудования. Широко применяется во всех сервисных центрах электротехнического оборудования, для тестирования. Также применяется для нагрева нихромовой нити, в животноводстве, для регулирования температуры нагрева инкубаторов и брудеров.

ЛАТР – самый простой способ получить заданное напряжение, либо менять его для исследований и тестов. При помощи поворота ручки с щеточным узлом переменное напряжение от обмотки на выходе ЛАТРа регулируется в диапазоне от 0 до 300 Вольт.

Компания SUNTEK (Сантек) специализируется на производстве лабораторных автотрансформаторов различной мощности. ЛАТРы SUNTEK отличаются удобством (серия RED имеет ряд дополнительных функций), качеством сборки, усиленным щеточным узлом, широким диапазоном выходных напряжений, формой и функционалом. Жидкокристаллический дисплей ЛАТРов SUNTEK позволяет контролировать напряжение на выходе с точность до вольта, чего нельзя сказать о стрелочной индикации, имеющей большую погрешность.

При использовании ЛАТРа следует понимать величину тока проходящего по обмотке ЛАТРа. Это основной показатель. Ввиду отсутствия гальванической развязки и наличия электрической связи ток первичной обмотки практически будет являться током и вторичной обмотки.

Автотрансформаторы: особенности конструкции, принцип действия

Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом — путем электромагнитной индукции и электрического соединения.. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а — понижающего, б — повышающего

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1, то оба тока геометрически сложатся, и по участку aХ будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь

Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии — трансформаторах — передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе. Размещаем на плате детали и припаиваем их. Когда схема собрана, настаёт время её предварительного испытания

Но нужно это делать очень осторожно. Все детали находятся под напряжением сети

Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали). Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора. После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры. У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм. Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора. Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах. Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт. Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку. Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения. Удачи вам.