Магнитный двигатель своими руками

Содержание

Теория магнитного двигателя

Новая теория магнитного двигателя заслуживает внимания, возможно кто-то из вас попробует воплотить идею в жизнь.

Всё, что я видел и читал в Интернете связанное с магнитными двигателями, не выдерживает критики. И те действующие системы работают или от первоначального импульса или вообще не действуют. А получать от них максимальную полезную работу и использовать в промышленности или дома не реально. Это лишь доказывает о том, что сконструировать его можно, посмотрим на другой подход к этой задаче.

В обычном электромагните или постоянном магните присутствуют два полюса и не что с этим не сделать. Дело в том, чтобы работал магнитный двигатель нужно избавиться от полюсов или статора или ротора.

Просмотрим некоторые элементы электромагнетизма.

Из школьного курса физики мы знаем, как выглядит поле бесконечно длинного провода (рис 1 а).

Рис 1

Оно не имеет полюсов, а замкнуто само на себя. Во втором случае намотав катушку, получили конфигурацию поля с полюсами (рис 1 в). По такому принципу и получают постоянные магниты.

Теперь взглянем на поведение провода с током в магнитном поле. Можно сказать поведение магнитного поля провода.

Если внести проводник с током в магнитном поле, то в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника и ослабление магнитного поля с другой стороны проводника. В резуль­тате действия двух магнитных полей произойдет искривление магнитных линий, и они, стремясь сократиться, будут выталкивать проводник. То есть магнитное поле проводника. (рис 2)

Из курса физики этот эффект называется электромагнитной силой.

Рис 2

Пробуем создать эффект электромагнитной силы без проводника. Для этого нам требуется создать магнит без полюсов, я думаю понятно почему. А какой магнит больше всего подходит? Только один — тороидальный. Для сборки понадобится обычный магнит но с полюсами срезанными под 45 градусов. (рис 3 а)

Рис 3

Собираем конструкцию из четырех постоянных магнитов (Рис 3 в). И получилась система с замкнутыми силовыми линиями внутри магнита. Вот мы и получили тор в прямоугольном исполнении.

Теперь создаем «тору» условия для эффекта электромагнитной силы (рис 4)

Как видно магнитное поле «тороидальной системы» направлено по часовой стрелке, а внешнее поле от северного полюса к южному, поэтому происходит эффект смещения, что порождает силу F.

Если собирать такой двигатель, то для статора лучше подойдет кольцевой магнит с аксиальным вектором намагниченности. Все привожу без формул, они здесь лишние.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Электромагнитные двигатели: описание и принцип работы

Конструкции электромагнитных двигателей только получают известность, широко они не используются. По сей день тема вечного двигателя будоражит конструкторов во всём мире. Стоимость электроэнергии довольно низкая, если сравнивать с бензином или соляркой. Каждый человек желает иметь под рукой вечное устройство, которое будет работать, не требуя ухода и большого количества топлива. Двигатели с электромагнитными клапанами (внутреннего сгорания) работают более эффективно, но добиться высокого КПД и снизить расходы на энергоносители все равно не получается.

В качестве основы для своих конструкций инженеры выбирают постоянные магниты. В них имеется огромная энергия, которой нужно только уметь воспользоваться. Двигатели, изготовленные по таким технологиям, довольно просты в производстве. Но вот выжать максимальное количество энергии вряд ли сможет каждый в домашних условиях. На то есть множество причин, главная – сложность конструкций.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на энергии магнитных полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50–100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Ограничение тока электромагнита

Данное устройство предназначено для ограничения тока, протекающего через электромагнит постоянного тока. Это связано с тем, что, в отличие от электромагнитов переменного тока, через электромагнит постоянного тока протекает ток, величина которого определяется только активным сопротивлением провода, из которого намотана катушка электромагнита. Как правило вследствие этого мощные электромагниты постоянного тока, без применения специальных мер, рассчитываются на работу в кратковременном режиме и даже при непродолжительной работе в режиме удержания очень сильно греются.

Такая история и приключилась. На одном из швейных предприятий используются прямострочные машинки фирмы JACK. Эта китайская фирма не вызывающая сомнений в своей репутации. Тем не менее используемые в машинках этой фирмы электромагниты очень сильно греются. Дошло до того, что электромагниты просто отключили, а возложенную на них функцию выполняют вручную.Понятно, что при этом падает производительность, да и работу это усложняет. Поэтому решили электромагниты вернут, снабдив их небольшой схемой. Ну это, конечно, не ограничивает применение данной схемы только в швейных машинках. Она может пригодится везде, где используются электромагниты постоянного тока (кто как, а я иногда использую автомобильные электромагниты).

Пару слов про физику работы электромагнита. При подаче напряжения на катушку электромагнита возникает магнитное поле, которое с определенным усилием притягивает магнитный сердечник. Зазор между катушкой и сердечником уменьшается, соответственно для создания заданного усилия уже требуется меньший магнитный поток. Величина создаваемого магнитного потока определяется током, протекающим через катушку. Как правило ток, необходимый для создания усилия при начале срабатывания, и ток, необходимый для удержания сердечника, различаются в несколько раз. Но поскольку у нас электромагнит постоянного тока, то протекающий ток не изменяется и электромагнит развивает излишнее усилие и при этом усиленно греет окружающий воздух.

Разработанная схема включается в разрыв плюсового провода электромагнита (минусовой бывает соединен с корпусом оборудования) и обеспечивает: — кратковременную подачу на электромагнит полного напряжения, для создания полного усилия для совершения электромагнитом возложенной работы; — подачу на электромагнит напряжения, достаточного, чтобы создать ток для режима удержания.

Схема реализована на микросхеме NE556, содержащей в себе два таймера NE555.

Первый таймер U1:A формирует задержку при подаче питания, в течение которой запрещена работа второго таймера U1:B и на электромагнит (по схеме заменен лампой L1) подается полное напряжение. По окончании задержки разрешается работа таймера U1:B включенного в режиме генератора и на электромагнит начинает поступать импульсное напряжение

Скважность импульсов определяется потенциометром RV1 и выбирается такой, чтобы обеспечить магнитный поток электромагнита достаточным для удержания сердечника. Работа таймера NE555 многократно описана в интернете, поэтому я не описываю досконально как и на что влияет каждый радиоэлемент

Просто продемонстрирую работу на видео.

Все элементы расположены на печатной плате размером 38*25 мм. Схема не критична к номиналам деталей. Транзисторы можно применять практически любые соответствующей структуры. Естественно полевой транзистор должен быть рассчитан на протекающий ток.

Вместо корпуса вся плата помещена в термоусадочный кембрик.

В кембрике проделано отверстие для регулировки потенциометра.

В архиве к статье приложены файл печатной платы и схема в Proteus.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Программируемый таймер и осциллятор NE556 1 Поиск в Aliexpress В блокнот
Q1 Биполярный транзистор 2N2222 1 Поиск в Aliexpress В блокнот
Q2 MOSFET-транзистор AUIRF4905 1 Поиск в Aliexpress В блокнот
D1 Светодиод АЛ307А 1 Поиск в Aliexpress В блокнот
D2 Выпрямительный диод FR106 1 Поиск в Aliexpress В блокнот
R1 Резистор 100 кОм 1 Поиск в Aliexpress В блокнот
R2 Резистор 2 кОм 1 Поиск в Aliexpress В блокнот
R3, R6, R7 Резистор 10 кОм 3 Поиск в Aliexpress В блокнот
R4, R5 Резистор 1 кОм 2 Поиск в Aliexpress В блокнот
R8 Резистор 100 Ом 1 Поиск в Aliexpress В блокнот
RV1 Переменный резистор 10 кОм 1 Поиск в Aliexpress В блокнот
C1, C2 Конденсатор 100 нФ 2 Поиск в Aliexpress В блокнот
С3 Конденсатор 100 нФ 1 Подбирается по требуемому времени задержки Поиск в Aliexpress В блокнот
C4 Электролитический конденсатор 100 мкФ 1 Поиск в Aliexpress В блокнот
C5 Конденсатор 1 нФ 1 Поиск в Aliexpress В блокнот
Добавить все

Генератор на неодимовых магнитах

Магнитный двигатель – это реально бесплатный генератор энергии, который может эффективно заменить подключение от локальной электрической сети, и не требует сложной разработки, нужно только купить магниты. Форум электриков утверждает, что таким образом можно создать бесшумный источник тока.

Фото — Магнитный генератор

Он работает по принципу мощных неодимовых постоянных магнитов. Когда магнитная сила достигает необходимого уровня, чтобы преодолеть трение, скорость двигателя направляется на пандусы, значение доходит до равновесия. В обычном двигателе, магнитное поле возникает от электрических катушек, которые как правило, состоят из меди (Cu), а иногда алюминия (Al).

Поскольку медь и алюминий не являются сверхпроводниками (их сопротивление не равно нулю), обычный электродвигатель должен непрерывно производить электроэнергию для поддержания магнитного поля и компенсации потерь. Этому построению сложно работать из-за высоких показателей потерь.

В магнитной конструкции не нужны катушки самоиндукции, поэтому он работает практически без потерь. Магнита использует постоянное магнитное поле, в котором генерируется сила движущегося ротора. Недостатком магнитов является то, что он не может управлять потоком. Вы не сможете переключить магнит на резистор или реле. Но преимуществ намного больше, чем недостатков:

  1. Низкая себестоимость;
  2. Отличные показатели работоспособности;
  3. Практически нет потерь электроэнергии.

Инструкция по сборке магнитного генератора с фото

Практическую модель этого генератора легко построить самостоятельно. Все, что вам нужно, это подходящий набор неодимовых магнитов. Очень маленькие неодимовые магниты можно найти даже в компакт-дисках или DVD фокусирующей системе.

Простейший самодельный механический генератор энергии подходит для генерации низких и средних уровней свободной мощности. Максимальная выходная величина значительно выше, чем максимум электрического контура энергии. При более легкой конструкции, чем электромагнитный прибор, мы получаем аналоговый асинхронный генератор.

Для генерации полезной электроэнергии, есть два варианта:

  1. 1. Использование мотков электродвигателя в качестве основы магнитного движка. Такой домашний прибор гораздо проще в конструировании, но в таком случае мотор должен иметь достаточно места для набора магнитов и обмотки катушек (при необходимости намотка осуществляется самостоятельно), для работы на дисбалансе.
  2. 2. Подключить к магнитному двигателю электрогенератор. Вы можете напрямую связывать валы или использовать зубчатую передачу. Второй вариант генератора способен генерировать больше энергии, но его сложно сконструировать.

Рассмотрим самостоятельный способ сборки.

Вентилятор компьютера может быть использован для создания небольшого прототипа магнитного генератора свободной энергии.

Фото — Компьютерный радиатор как двигатель

Фото — Вентилятор от компьютера в разборке

Изначально катушки используются для создания магнитного поля. Мы можем заменить катушки неодимовыми магнитами. Магниты должны быть помещены в тех же направлениях, в которых расположены исходные катушки. Это гарантирует, что ориентация магнитного поля, необходимая для работы двигателя, остается такой же. В этом двигателе, есть четыре катушки, поэтому нужно использовать четыре магнита.

Фото — Катушки Фото — Подключение неодимовых магнитов к катушке

Магниты, расположены в направление катушек. Двигатель работает из-за образовавшегося МП, он не нуждается в электроэнергии. Меняя направление магнитов, Вы можете изменять скорость вращения двигателя, соответственно и его энергию.

Фото — Правильное расположение магнитов

Фото — Поворот магнитов и работа двигателей

Эти генераторы свободной энергии – вечные, двигатели будут работать до тех пор, пока из цепи не уберется какой-то магнит. Если собрать такой мотор в домашних условиях из более мощного радиатора, то электричества хватит для питания лампочки или даже нескольких бытовых приборов (до 3 кВт), просто Вам понадобится прикрепить к устройству провода, которые будут передавать ток к потребителю электроэнергии.

Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.

Как сделать соленоид Enginen Car

Шаг 1: Изготовление соленоидного цилиндра

  • Прежде всего, нарежьте две одинаковые части ACP или лист волокна.
  • И отметьте диаметр шприца на листе. Затем удалите ненужную часть.
  • Теперь отрежьте 2 дюйма от цилиндрической части шприца. Зафиксируйте часть шприца на листе.
  • Теперь настало время намотать медный провод 26 калибра на шприц.
  • Ветер магнитный провод плотно. Минимум поворотов 60, максимум: максимально.
  • Чем больше вы накручиваете магнитную проволоку, ваш двигатель будет работать быстрее и мощнее
  • Сделайте необходимые отверстия. Смотреть видео.

Шаг 2: Изготовление поршня

Поршень состоит из трех частей. Головка поршня, шатун и кривошип.
Мы использовали цилиндрический магнит в качестве головки поршня,
устройство для крепления волоконного винта в качестве шатуна,
маленький кусочек еще глубже как рукоятка.
Шатун играет важную роль в легкой передаче мощности на коленчатый вал.
Я сделал это гибким

Обратите внимание.
Смотреть видео для более подробной информации

Соленоидный двигатель

Соленоидные двигатели можно классифицировать на резонансные и нерезонансные. По конструкции нерезонансные двигатели бывают однокатушечные и многокатушечные. В параметрическом двигателе сердечник при втягивании его в соленоид ( катушку) занимает среднее положение не сразу, а после нескольких колебаний около положения магнитного равновесия. При совпадении собственных колебаний сердечника с частотой сети наступает резонанс.

Соленоидный двигатель является наиболее простым по конструкции из названных и компактным. Недостатками его являются низкий КПД и большая скорость движения рабочего органа. В настоящее время преодолеть эти недостатки является невозможным, что затрудняет применение подобного двигателя для насосов, предназначенных для добычи нефти.

В однокатушечных соленоидных двигателях включение и выключение рабочей катушки осуществляется механическим выключателем под действием тела сердечника, что не нашло применения в приводе насосов, либо при помощи полупроводникового вентиля. Обратный ход в обоих случаях осуществляется за счет упругости пружины. В многокатушечных соленоидных двигателях попеременное включение катушек осуществляется при помощи вентилей. К каждой катушке ток от источника питания подается в один из полупериодов синусоидального напряжения. Сердечник поочередно втягивается то одной, то другой катушкой, совершая возвратно-поступательное движение.

В качестве исполнительных элементов предполагается использовать реверсивные синхронные двигатели, шаговые реверсивные двигатели и кодовые наборы импульсных соленоидных двигателей . Исполнительные элементы могут воздействовать на дистанционные задатчики локальных регуляторов или непосредственно на исполнительные механизмы.

Разрабатывались и проверялись схемы с приводом от соленоидных двигателей , схемы с различными механическими преобразователями вращательного движения в возвратно-поступательное.

При неравенстве напряжений на конденсаторе переменной емкости Сх и постоянной емкости С1 на вход усилителя У прибора подается напряжение рассогласования Up, которое преобразуется вибропреобразователем ВП в переменное напряжение. Переменное напряжение усиливается усилителем У и подается на соленоидный двигатель М, который воздействует на конденсатор переменной емкости Сх и на показывающее и пишущее устройство прибора.

Зону нечувствительности имеют тиратроны в двухтактной схеме и гидравлические серво-цилиндры, а гистерезис — пневматические клапаны и соленоидные двигатели . Примерами систем с изменяющимися параметрами служат реактивный двигатель и регуляторы давления переменного потока. Сюда же относится очень важная нелинейность, существующая во всех линейных системах — ограничение максимальной возможной величины корректирующей силы, момента или мощности. Это ограничение может быть вызвано источником питания, которым может служить баллон сжатого воздуха, паровой котел, электрический двигатель или генератор. Ограничение может также накладываться размерами и весом выходного преобразователя информации в мощность, который превращает пневматический или электрический управляю ций сигнал в регулируемую величину полезной механической мощности. В любом случае, когда управляющий сигнал превышает некоторую величину, выходной сигнал ограничен и не зависит от входных сигналов, превышающих уровень ограничения, или насыщения.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Что такое магнитный двигатель?

Что такое вечный двигатель? Фактически, это механизм, КПД которого составляет 100%. К сожалению, на практике это выглядит несколько по-иному, ведь в работу вмешивается слишком много физических явлений, таких как сила трения и т.д. Со временем составные части любого механизма изнашиваются и выходят из строя, соответственно, требуют замены.

Рисунок 1: Один из вариантов реализации магнитного двигателя

Магнитный двигатель не исключение, он обладает интересной, обоснованной с технической точки зрения конструкцией. Движение здесь обеспечивают постоянные (не электрические) магниты и подвижные металлические поверхности. Получается, что магнитному двигателю достаточно только задать вращение, и в случае необходимости обеспечить остановку.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда. опубликовано econet.ru