Дешёвый хронограф для пневматики своими руками

Содержание

Факторы, влияющие на скорость пули

Существует целый список различных причин, который повлияет на вылет снаряда из ствола. Такими причинами являются:

  • Температура. Высокая температура окружающей среды способствует разогреву пороха и вылету патрона. Соответственно, максимальная скорость пули возрастает.
  • Сырой порох. Попадание на порох влаги не благоприятно сказывается на его взрывных качествах, как следствие, скорость снаряда выпущенного при помощи такого пороха уменьшается.
  • Размер частиц пороха. Меньший размер частиц пороха благоприятно сказывается на его взрывчатых свойствах, а это значит, что и максимальная скорость полета пули станет выше.
  • Плотность пороха в патроне. Для того чтобы корректно произвести зарядку изделия порохом, необходим специалист. Так как неправильная дозировка может привести к непредсказуемым последствиям.
  • Длина ствола оружия. Длинный ствол подходит для тех целей, когда необходима высокая скорость полета, т. к. время действия пороха увеличивается, а давление внутри ствола возрастает — пуля летит быстрее.
  • Вес самого снаряда. Чем больше вес используемого патрона, тем меньшую скорость он сможет набрать. Это довольно известный физический закон.

Это основные факторы, которые в большей степени оказывают, влияние на мощность движения снаряда.

Дульная энергия выпускаемой пули

Давайте отойдем от скорости

Ведь не менее важной характеристикой является энергия самого снаряда. Для того чтобы рассчитать подобный показатель, необходимо вспомнить такой школьный предмет, как физика

Такая формула требует минимум значений. Необходимо массу умножить на скорость. Все единицы брать необходимо в системе СИ. Но из-за чего так необходимо это значение? Это связанно с тем, что энергия – мощность пули. Это ее основная боевая особенность.

Из всего этого следует, что чем больше масса снаряда и выше скорость полета, тем больше ее энергия, а это значит, что оружие становится более, убойным. В максимальной убойности и в дальности стрельбы преуспело такое оружие, как винтовка. В их снарядах сбалансирована масса и начальная скорость пули.

Для примера, на расстоянии примерно 1 км пуля винтовки проникает в достаточно плотные материалы на глубину от 0,6 до 350 см. В качестве материалов применяются стальные и металлические плиты, земля, гравий, песок, кирпичные стены, бетонные стены, бревна деревьев, снег. Эти значение были получены в процессе изучения дульной энергии легких снарядов.

Влияние длины ствола на скорость

Многие считают, что чем длиннее ствол, тем выше скорость пули. Подобное мнение правильно, но в реальности все намного сложнее. Ведь стволы одинаковой длины могут принадлежать к разным видам оружия.

Объяснить влияние размера ствола на скорость движения пули можно следующим образом: мощность трения внутри ствола постоянна, а по мере движения она медленно теряет кинетическую энергию. При этом давление газов на заднюю часть летящего патрона быстро снижается, вплоть до определенного момента, когда замедление по причине трения равняется по силе, разгоняющей пулю, давлением газов. Именно в этот момент достигается максимальная скорость патрона. После этого трение берет верх над патроном, постепенно его замедляя.

Хронограф рамочного типа для пневматики своими руками

Хронограф фиксирует время пролета пули между несколькими датчиками и рассчитывает ее скорость. Устройство состоит из трех частей:

  • рабочей зоны, пропускающей через себя пулю;
  • схемы, проводящей вычисления;
  • дисплея, показывающего рассчитанные результаты.

Схемы для хронографа могут быть различны по стоимости, функциональности и дизайну. Простейшие датчики считывают падающий на них свет, интенсивность которого изменяется по мере перемещения пули, отбрасывающей тень. Чувствительные к свету элементы являются частью многих хронографов, сделанных в домашних условиях и в заводских моделях.

Самостоятельно изготовленный прибор имеет несколько преимуществ:

  • большое линейное расстояние между датчиками позволяет выводить расширенный диапазон скоростей;

  • аппарат можно применять в домашних условиях на оружии, использующем саунд-модератор;
  • широкая зона для работы дает возможность вести стрельбу в упор и с дальних точек, тестируя изменения баллистических данных на различных расстояниях;
  • хронограф взаимодействует с пневматическим оружием любой конструкции и с различными принципами работы, например, ППП, РСР, СО2.

Наряду с этим, у аппарата есть и свои недостатки:

  • громоздкость конструкции;
  • потребность в защите от попадания для лицевой стороны рабочей зоны;
  • влияние погодных условий и освещения на работу;
  • чувствительность схемы оптики к значительным механическим воздействиям, включающим попадания пулевых осколков и рикошеты;
  • вывод ложных показаний при появлении в камере посторонних предметов, таких как снег, насекомые или механические осколки;
  • влияние траектории полета на фиксируемую скорость пули (движение объекта по диагонали снижает показатель).

Компоненты и материалы для сборки

Общее количество деталей и их сложность зависят от уровня навыков проектирования и установки схем у пользователя. Некоторые компоненты являются обязательными при любом виде сборки:

  • светодиоды для создания искусственного источника света;
  • паяльник с флюсом и припоем для закрепления проводов и установки микросхемы;
  • оптические приемники для считывания уровня освещенности во время пролета пули через светодиоды;
  • микросхема для определения времени полета пули и расчета скорости;
  • дисплей для отображения результатов замеров;
  • прямоугольный полый корпус, закрытый с четырех сторон (лучше выбирать изделие из цельного металла, которое будет устойчиво к ударам).

Этапы монтажа хронографа

Элементы микросхемы и датчики должны находиться под защитой или располагаться в местах, которые не будут доступны для прямого попадания пули. Под них нужно заранее подготовить место в корпусе. Внутренняя часть изделия покрывается темной краской, не создающей бликов, чтобы избежать лишних срабатываний прибора и увеличить его чувствительность.

Элементы чувствительные к свету и сами светодиоды монтируются в предварительно размеченные отверстия. Фотоприемники должны быть немного заглубленными, а светодиоды слегка выпирать во внутреннюю часть хронографа. Такое размещение позволит снизить интенсивность внешнего света, падающего на прибор.

На следующем этапе устанавливается и подключается к датчикам плата, размечаются секции под введение питания. Для самостоятельного составления схемы можно использовать рис. 1.

Рис. 1 Микросхема хронографа

Когда основные узлы будут собраны, схему нужно будет защитить от механических воздействий и влаги. Для этой задачи подойдет коробок из пластмассы для печатной платы, который будет иметь выходы к батарее, дисплею и датчикам.

Принцип работы хронографа собственного изготовления

В качестве источника питания для прибора могут использоваться батареи, аккумуляторы, блок питания, подключаемый к сети. Автономный источник более выгоден и удобен, так как настройка оружия в большинстве случаев проводится за пределами дома.

Процесс замера скорости проходит три этапа:

  • пуля проходит через ось начального датчика, обнуляя счетчик времени в микропроцессоре;
  • после пересечения пулей оси следующего датчика, время останавливается и данные передаются для проведения расчетов;
  • микропроцессор проводит вычисления и выводит показатели скорости на дисплей.

Наглядно работу хронографа рамочного типа можно увидеть на рис. 2.

Рис. 2 Схема работы хронографа

Для того, чтобы самостоятельно собрать хронограф, понадобятся знания и опыт в электротехнике, пайке и разработке электрических цепей. Облегчить задачу можно, заказав изготовление микросхемы мастеру по электронике. Хронограф, собранный своими руками, обойдется значительно дешевле, чем покупной вариант.

Серая коробочка радиодеталей. Хронометр для пневматики своими руками

Владею пневматической винтовкой, всегда была интересна скорость вылета пули из ствола, это кому-то покажется странным, но у пневмолюбов скорость пули одна из главных тем для членометрии. Погуглив немного нашел несколько вариантов схем на разных микроконтроллерах, так как у меня уже был опыт работы с AVR, без раздумий выбрал вариант на avr. Все необходимые детали я нашел на упоминавшемся уже здесь Taydaelectronics.com. Покупка собрана, оплачена, получена, приступим…

Сразу приложу схему:

Итак, нам понадобится:

добавил разъемов в схему

кое-как расставил компоненты, чтобы иметь примерное представление, как рисовать дорожки. И да, у меня нет принтера, я рисую дорожки перманентным маркером)))

сначала пробую на бумаге

потом переношу на текстолит

Травим. Травлю в горячем растворе хлорного железа, разведенного примерно 1:3 с водой. После травления раствор храню на балконе, он работает даже после высыхания, нужно просто добавить воды. Следует осторожничать и не допускать попадания его на металлические поверхности — начнется усиленная коррозия.

Чистим

Сверлим. Дрельку делал из патрона и моторчика с фасттека.

Вот все компоненты запаяны на плату, осталось только прошить микроконтроллер

ОНО ЖИВОЕ!

После этого я изготовил измерительную трубку с датчиками. Устроено просто — на расстоянии 50 мм друг от друга находятся расположенные друг напротив друга фототранзистор и светодиод, своеобразные оптопары. Когда пулька пролетает по трубке, она поочередно перекрывает луч света первому и второму транзистору, о чем они сигналят микроконтроллеру, который высчитывает скорость по всем известной со школы формуле.

/* * Прошивка без наворотов, расстояние между датчиками 100мм * общий анод! * Updated at: 15.12.2013 * Author: pahan */

#define F_CPU 1000000UL

0b00111111 #define LED_1

0b00000110 #define LED_2

0b01011011 #define LED_3

0b01001111 #define LED_4

0b01100110 #define LED_5

0b01101101 #define LED_6

0b01111101 #define LED_7

0b00000111 #define LED_8

0b01111111 #define LED_9

0b01101111 #define LED_DOT

0b01000000 #define LED_E

0b01111001 #define LED_r

0b01010000 #define LED_G

0b00111101 #define LED_o

#define BASE_LENGTH 1000

typedef struct LedPanel int seg1; int seg2; int seg3; > LedPanel;

void renderSegmentNext() static int activeSegment = 0; activeSegment = (activeSegment + 1) % 3;

switch (activeSegment) case 0: PORTB = led.seg1; PORTD =

0b0110000; break; case 1: PORTB = led.seg2; PORTD =

0b1010000; break; case 2: PORTB = led.seg3; PORTD =

void initPorts() //init led ports DDRB = 0xFF; DDRD |= (0b111 400) led.seg1 = LED_MINUS; led.seg2 = LED_MINUS; led.seg3 = LED_MINUS; return; >

led.seg3 = digitToLedValue(value % 10); if (value >= 10) led.seg2 = digitToLedValue((value / 10) % 10); > else led.seg2 = LED_EMPTY; > if (value >= 100) led.seg1 = digitToLedValue((value / 100) % 10); > else led.seg1 = LED_EMPTY; > >

ISR( TIMER1_OVF_vect ) //stop timer and reset value TCCR1B &=

(1 я просто приставлял ствол к трубке. три выстрела, все удачные

Вполне можно значительно увеличить сечение измерительного прохода, если чуть усложнить оптическую систему и дополнительно усилить сигнал с фототранзистора. Если в проходе прямоугольного сечения сверху и снизу проложить два строго параллельных зеркала, то запущенный в такую систему под небольшим углом сфокусированный световой луч образует в сечении прохода световую преграду. При этом, прерывание летящей пулей светового луча в любой точке — вызовет появление сигнала на фотоприёмнике. Как-то так:

Дальше целое поле для творчества, Например, расфокусировать луч по оси, находящейся в плоскости преграды, сократив при этом количество отражений и усилив ставший более слабым импульс на выходе фотоприёмника, или вообще применить вместо светодиода лазерный диод, дающий не точку, а линию…

Типы хронографов

Измерение стартовой скорости пули при помощи хронографа, позволяет выявить мощность пистолета или винтовки, подобрать подходящие пули, рассчитать баллистические поправки, провести сравнение скорости в начале и после модернизации оружия.


Существуют различные типы хронографовпереходник

При обладании внушительным арсеналом, лучше приобрести рамочный хронограф, чтобы не закупать большое количество переходников. Этот тип прибора хорошо работает с СО2, имеет разъем для внешнего источника питания. Броня позволяет проводить измерение показателей на различной дистанции, не опасаясь повредить механизм. Наличие дополнительного экрана помогает оперативно получать результаты.

Существуют также рамочные модели большого размера, расширяющие число возможностей. Такой вариант подходит для использования с любыми видами оружия, удобен при стационарном подключении к сети. В качестве альтернативы, хронограф может получать питание от батарей класса АА в количестве восьми штук. В отличие от модели малого размера, большой аппарат обладает встроенным индикатором фронтального типа. Можно дополнительно установить съемный экран. При помощи USB-адаптера можно переносить данные измерения с устройства на компьютер.

Самодельный рамочный хронограф для пневматики

Конструкция аппарата включает рабочую зону, через которую пролетает пуля, вычислительную схему и дисплей для визуализации полученных результатов. Принцип действия прибора состоит в фиксировании времени, которое требуется пуле для пролета известного отрезка между двумя или несколькими датчиками, и последующий расчет ее средней скорости (расстояние делится на время).

Существуют различные схемы хронографа, отличающиеся функциональностью, дизайном и ценой реализации.

Самые простые датчики, реагирующие на пролет пули и доступные для обывателя, работают за счет изменения интенсивности падающего на них света (пролетающая пуля отбрасывает тень). Именно светочувствительные элементы применяются в конструкциях большинства самодельных и серийных приборов.

Преимущества самодельного рамочного хронографа для пневматики со световой схемой:

  • большие размеры рабочей зоны, позволяющие производить выстрел как в упор, так и на значительном удалении (можно испытывать баллистические характеристики пуль на разном расстоянии);
  • широкий диапазон измеряемых скоростей из-за увеличенного линейного промежутка между датчиками;
  • пригодность к тестированию любого типа пневматики, независимо от конструкции и принципа действия (PCP, ППП, модели на CO2 и пр.);
  • возможность использования в домашних условиях с оружием, оснащенным саунд-модератором.

Недостатки:

  • необходимость защиты лицевой части рабочей зоны от случайных попаданий (бронирование);
  • чувствительность оптической схемы к сильному механическому воздействию, в том числе рикошету и ударам осколками пули;
  • громоздкость;
  • рассчитанная скорость пули зависит от траектории полета (выстрел по диагонали уменьшает измеренное значение);
  • зависимость работоспособности большинства моделей от степени освещенности и погоды;
  • ложное срабатывание при попадании в камеру посторонних объектов (снег, механические частицы, насекомые).

Фото самодельного рамочного хронографа

Главная причина популярности рамочных хронографов – универсальность в эксплуатации и возможность использования с любым типом оружия.

Необходимый материал и детали

Для сборки хронографа требуется ряд устройств и инструментов. Их полный перечень зависит от навыков пользователя по проектированию и монтажу электрических схем.

Обязательно понадобятся следующие компоненты:

  • паяльник, припой и флюс – применяются на всех этапах подготовки микросхемы и соединения проводов;
  • микросхема, с помощью которой осуществляется замер временного интервала между прохождением пулей датчиков и расчет скоростных параметров;
  • светодиоды – служат источником искусственного освещения;
  • оптические приемники – фиксируют изменение освещенности при пролете пули между ними и светодиодами;
  • корпус прямоугольной формы, имеющий четыре стороны и полый изнутри (наподобие внешней части спичечной коробки). Лучше всего подойдет цельнометаллический корпус, устойчивый к удару пули при промахе;
  • дисплей для вывода результатов измерений.

Пневматические винтовки

Совсем недавно среди любителей пневматического оружия был проведен соц. опрос — какую максимальную скорость пули имеет их пневматика. По странному стечению обстоятельств, разброс в ответах очень сильно разнился. Большее количество опрошенных людей говорили вполне вменяемые цифры, а именно 210-300 м/с. И данные цифры вызывают доверие, так как это стандартный показатель для такого типа оружия.

Усомниться достоверности своих слов заставляет другая часть опрошенных, которая утверждает, что их пневматическое оружие имеет скорость пули в размере 380 м/с, и даже больше. Довольно мощное орудие получается. Его можно назвать даже боевым. Ведь такими показателями обладают не многие виды пневматического оружия.

Остальные ответили, что их пневматика стреляет по 110-120 м/с и 140-190 м/с. У некоторых максимальная скорость пули в мире стремиться к 360 м/с, и это является достаточно высоким показателем. А у остальных этот показатель ровняется 75-110 м/с.

Обычно для измерения скорости у пневматического оружия используют хронометр. Ведь большинство хронометров создавалось как раз для измерения подобного показателя в пневматическом оружии. Хоть у хронометров и имеются погрешности, значения он показывает достаточно достоверные.

Существуют разные методы измерения скорости полета снаряда, и каждый из них имеет свои недостатки. А от погрешностей нельзя избавиться, т. к. условия, при которых проводятся измерения, всегда разные. Поэтому одно и то же оружие может показывать разные результаты.

Как далеко летит снаряд

Как далеко летит снаряд

Теперь попытайтесь ответить на такой вопрос: нет ли связи между углом бросания и расстоянием, которое пролетает снаряд?

Попробуйте выстрелить из орудия один раз при горизонтальном положении ствола, другой раз – придав стволу угол бросания 3 градуса, а в третий раз – при угле бросания 6 градусов.

В первую же секунду полета снаряд, как мы уже знаем, должен отойти вниз от линии бросания на 5 метров. И значит, если ствол орудия лежит на станке высотой 1 метр от земли и направлен горизонтально, то снаряду некуда будет опускаться, он ударится о землю раньше, чем истечет первая секунда полета. Расчет показывает, что уже через 6 десятых секунды произойдет удар снаряда о землю (рис. 134).

Рис. 134. Так летел бы снаряд, если бы стволу орудия придали горизонтальноеположение

Снаряд, брошенный со скоростью 600–700 метров в секунду, при горизонтальном положении ствола пролетит до падения на землю всего лишь метров 300.

Теперь произведите выстрел под углом бросания в 3 градуса.

Линия бросания пойдет уже не горизонтально, а под углом в 3 градуса к горизонту (рис. 135).

По нашим расчетам, снаряд, вылетевший со скоростью 600 метров в секунду, должен был бы через секунду подняться уже на высоту 30 метров, но сила тяжести отнимет у него 5 метров подъема, и на самом деле снаряд окажется на высоте 25 метров над землей. Через 2 секунды снаряд, не будь силы тяжести, поднялся бы уже на высоту 60 метров, на самом же деле сила тяжести отнимет на второй секунде полета еще 15 метров, а всего 20 метров. К концу второй секунды снаряд окажется на высоте 40 метров. Если продолжим расчеты, они покажут, что уже на четвертой секунде снаряд не только перестанет подниматься, но начнет опускаться все ниже и ниже. И к концу шестой секунды, пролетев 3600 метров, снаряд упадет на землю (см, рис. 135).

Расчеты для выстрела под углом бросания 6 градусов похожи на те, которые мы только что делали, но считать придется много дольше: снаряд будет лететь 12 секунд и пролетит 7200 метров.

Рис. 135. Траектория снаряда в безвоздушном пространстве при угле бросания,равном 3 градусам

Вы нашли правило: чем больше угол бросания, тем дальше летит снаряд.

Но этому увеличению дальности есть предел: дальше всего снаряд летит, если его бросить под углом 45 градусов (рис. 136).

Если еще увеличивать угол бросания, снаряд будет забираться все выше, но зато падать он будет все ближе.

Само собою разумеется, что дальность полета будет зависеть не только от угла бросания, но и от скорости: чем больше начальная скорость снаряда, тем дальше он упадет при прочих равных условиях.

Рис. 136. Угол наибольшей дальности и траектории при стрельбе под разнымиуглами бросания

Например, если бросить снаряд под углом 6 градусов со скоростью не 600, а 170 метров в секунду, то он пролетит не 7200 метров, а всего лишь 570.

Остается только проверить теперь эти вычисления на опыте.

Выбираю хронограф для пневматики

Дозрел до покупки хронографа, решил, что я уже продвинутый айрганнер, буду мерить скорости, подбирать пули и т.д. Опять же, Леля не настроена, надо бы ее отрегулировать. При выборе решил не ориентироваться на магазины и перекупщиков, т.к. у производителя дешевле, проще с сервисом и вообще я испытываю огромное уважение к людям, которые умеют делать что-то своими руками. Сразу предупреждаю, никакой рекламы в этой статье нет, пишу исключительно свои изыскания. Вечером поизучал ганзу, начитался, делюсь открытиями.

Принцип работы хронографа заключается в измерении количества импульсов генератора за время срабатывания датчиков на передней и задней рамке через которые проходит пуля. Генератор генерирует импульсы (во, какая тавтология), пуля пролетела, импульсы посчитали. Число импульсов делим на частоту в Герцах генератора и получаем время. Для вычисления скорости делим расстояние между датчиками (в метрах) на время (в секундах) которое у нас получилось. Современные хронографы способны измерять скорость пули до 2000 м/с (для справки, скорость звука 340 м/с), запоминать до сотни показаний, выводить все это добро на компьютер и с помощью специальных программ строить графики. Вещь, безусловно, полезная, но очень узкоспециализированная. Жене точно не объяснить, почему из семейного бюджета нужно обязательно купить хронограф

Хронографы грубо можно поделить на две основные категории: рамочные и наствольные.

Рамочные представляют из себя достаточно большую открытую конструкцию с двумя металлическими рамками. Собственно, пуля, или любой другой предмет влетает в переднюю рамку, вылетает из задней, меряется скорость пролетания этого расстояния и выводится на дисплей. Масштабы вашей фантазии ограничены размерами рамки. Можно стрелять из пневматики, луков, подводных ружей, огнестрела, аркебуз и пищалей. Ограничения возможны по освещенности, ну и, конечно, по габаритным размерам. Таскать с собой большой рамочный хронограф на пострелушки — удел энтузиастов

Наствольные хронографы, как можно догадаться, крепятся к стволу винтовки. Стандартная конструкция — металлическая или пластиковая трубка с корпусом прибора. Плюсы — мобильность, легкость; минусы — большая погрешность измерений при стрельбе из СО2 и пороховых винтовок, т.к. при выстреле помимо пули вылетают брызги, газы, всякие продукты сгорания и путают показания датчиков.

Я нашел троих производителей и продавцов хронографов: Хронографы от мастера prockofev. На меня произвели впечатление очень профессионально выполненных приборов. Модель наствольного хронографа S07 продается уже давно, перекупщики ее очень любят, что, вероятно, говорит о высоком качестве. Смотрите тему, изучайте ТТХ хронографов — отличные приборы, но цена примерно в полтора раза выше, чем у конкурентов. Возможно, это цена за имя мастера и качество изделий. Решайте сами.

Рамочные хронографы от мастера Lewon. Внешний вид, конечно, ориентирован на радиолюбителей. С питанием надо разбираться самому, при этом, как настоящему минеру не забыть, что плюсовой провод — красный Печатная плата открытая, все можно крутить, паять и радиодеталить. Короче, можно стебаться долго, но у хронографов есть неоспоримый плюс — цена. Тут каждый решает для себя сам. Как в анекдоте: или шашечки, или ехать.

Наствольный хронограф от мастера Agioso. Ассортимент состоит только из одной модели, но она производит впечатление проработанной конструкции на уровне заводского исполнения. Все нравится, единственное, я не вижу большого смысла предлагать на выбор приборы с разной длиной трубы. Лично мне было бы куда интереснее предложение с переходниками на разные диаметры стволов и модераторов. Одновременно стрелять и второй рукой держать у ствола такой хронограф неудобно, придется самому что-то колхозить. Думаю, в рамках производства, переходники получились бы не сильно дорогие, а удобства добавили очень много.

Поделись ссылкой на статью «Выбираю хронограф для пневматики» с друзьями:

Начальная скорость снаряда


Вылет дроби из ствола на расстоянии 1,8 м

Фактически же в эту скорость включают и некоторое приращение скорости, вызванное последействием пороховых газов. Эта суммарная скорость обозначается латинской буквой V (V=velocitas) с подстрочным указателем нулевой дистанции: Vo.

Начальная скорость является важнейшим баллистическим показателем, предопределяющим резкость боя. Однако не сразу исследователям удалось измерить скорость снаряда в непосредственной близости дула. Долгое время ее приходилось вычислять, исходя из времени, которое затрачивал снаряд на преодоление дистанции в 10, 20 или 25 м, а в некоторых случаях и в 40-50 м.

Как увидим ниже, скорость дроби из-за сопротивления воздуха во время полета непрерывно снижается. Поэтому скорость, определяемая по затраченному на перелет времени, является средней скоростью на данном отрезке траектории. Условно принимается, что снаряд имел эту же скорость, находясь на середине дистанции, то есть соответственно в 5, 10 или 12,5 м от дула. Эти скорости обозначаются латинскими буквами с подстрочными указателями дистанции: V5, V10, V125.

Время, затрачиваемое снарядом на преодоление той или иной дистанции, определяется следующим образом. Перед дулом ружья помещается тонкая проволока А-В, по которой проходи электрический ток. Вырываясь из ствола, снаряд перебивает проволоку и размыкает электрическую цепь.

При этом включается тот или иной счетчик времени (хронограф). Далее снаряд, преодолев определенную дистанцию, попадает в специальную мишень С-D и разрывает вторую цепь, чем отключает счетчик времени. Следовательно, счетчик работает только в течение того времени, которое потребовалось снаряду для перелета от дула до мишени. Средняя скорость вычисляется по формуле:

Скорость средняя = расстояние до мишени/время полета до мишени.

Определение времени полета осуществимо многими способами. Еще в конце прошлого века бельгийский полковник Ле-Булонже использовал с этой целью закон свободного падения тел под действием земного притяжения. Когда снаряд разрывал электрическую цепь у дула А-В, размагничивался электромагнит М1 и стальной стержень S1 в цинковой рубашке падал.

Когда снаряд размыкал вторую цепь, размыкалась цепь питания электромагнита М2 и падал стержень S2. Этот стержень при своем падении освобождал нож N, который под действием пружины Р делал зарубку на стрежне S1. Измеряли расстояние от этой зарубки до нулевой и находили время падения стержня S1 по формуле:

t = корень из 2h/9,81

От найденного времени отнимали время (0,15 с), которое уходило на падение стрежня S2 и срабатывание ножа.

В настоящее время применяются более совершенные хронографы: оптические по Томпсону, электронные, построенные на принципе гальванического маятника. Эти приборы, а в первую очередь электронные счетчики импульсов, обладают высокой чувствительностью и позволяют определять скорости снарядов у самого дула.

При стрельбе из нарезного оружия увеличение начальной скорости практически всегда желательно: траектория пули выпрямляется, а ее кинетическая энергия возрастает. Несколько иначе обстоит дело при стрельбе дробью из гладкоствольного оружия.

С одной стороны, сопротивление воздуха полету дроби возрастает пропорционально квадрату скорости. Поэтому дробь, выпущенная с большей скоростью, теряет эту скорость быстрее, чем дробь, имевшая меньшую начальную скорость. В результате на предельных расстояниях эффективной стрельбы разница в скоростях сокращается до минимума.

С другой стороны, увеличение начальных скоростей до 400-425 м/с связано либо с уменьшением массы снаряда, а следовательно, и плотности осыпи, либо с резким увеличением максимальных давлений. Кроме того, при высоких скоростях и повышенных давлениях усиливается деформация дроби и ухудшается осыпь.

Практика показала, что на охоте наиболее выгодной оказывается скорость в 375-380 м/с и еще вполне удовлетворительной можно считать скорость в 360 м/с. Другое дело — стрельба на стенде, особенно на траншейном. Стреляют не далее 35 м, то есть на дистанциях, на которых еще сказывается высокая начальная скорость, что позволяет делать меньшие упреждения. Кроме того, стендовые ружья делаются более массивными и рассчитаны на более высокие давления пороховых газов. В этих условиях повышение начальных скоростей до 400 и даже 420 м/с можно считать оправданным.

Потеря скорости дробью при различных начальных скоростях

Скорости полета
N№ дроби Vo разница V18 разница V35 разница V55 разница
4 400 60 305 24 245 14 206 10
360 281 231 196
7 400 60 281 21 215 12 174 7
360 260 203 167

Кирилл Мартино 13 декабря 2013 в 00:00