Tl494, что это за «зверь» такой?

Содержание

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.
  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения

. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА

. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном

. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2)

. Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2.Интегральная схема будет держать напряжение на уровне 2,5 В . Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23

.Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке . В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

Производители

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, – словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Особенности импульсного варианта ЭН

Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.

При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.

Tl494 как стабилизатор тока

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум Усилители мощности
  • Шокеры
  • Качеры, катушки Тэсла
  • Блоки питания
  • Светодиоды
  • Начинающим
  • Жучки
  • Микроконтроллеры
  • Устройства на ARDUINO
  • Программирование
  • Радиоприемники
  • Датчики и ИМ
  • Вопросы и ответы

Online расчёты
Умный дом
Видео
RSS
Приём статей

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь

Форум

  • Усилители мощности

Шокеры
Качеры, катушки Тэсла
Блоки питания
Светодиоды
Начинающим
Жучки
Микроконтроллеры
Устройства на ARDUINO
Программирование
Радиоприемники
Датчики и ИМ
Вопросы и ответы
Online расчёты
Умный дом
Видео
RSS
Приём статей

Самоделки превратили обезьяну в человека

Из обычного компьютерного блока питания можно сделать вполне приличный лабораторный БП с диапазоном регулируемого напряжения от 2,5 до 24 вольт.

Видео: Первая проверка регулируемого БП из АТ (АТХ) БП ПК.

Главная деталь проекта, это рабочий БП от компьютера, старого АТ образца или нового АТХ, без разницы.

Зато мощность БП имеет непосредственное значение, если Вам будет нужна на выходе приличная мощность, то и блок питания нужно выбрать с соответствующим амперажем на выходе. Смотрим внимательно параметры на крышке БП.

Переделка заключается во внесении изменений в стандартную работу микросхемы TL494CN (или её полных аналогов DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).

Поэтому после вскрытия корпуса, сразу ищем одну из выше указанных микросхем и читаем дальше.

Вот описание выходов микросхемы TL494CN и её аналогов.

Теперь немного схем исполнения БП, вдруг одна из них копия вашего БП и тогда Вам повезло, разбираться будет значительно легче.

Будем производить изменения в обвязке IC 494 и построим новую схему.

Как видите, нам будут нужны изменения на ножках №1, 2, 3, 4, 15, 16, удаляем старые цепи и делаем новую обвязку, все остальные ноги не трогаем.

На рисунке 3 пример правильно доработанной схемы, осталось только впаять переменные резисторы, вольтметр и амперметр.

В схеме моего АТ БП оказался аналог KA7500, теперь смотрим внимательно обвязку и расположение приходящих к ножкам нашей микросхемы дорожек и деталей, зарисовываем и записываем для удобства.

Когда на бумаге и в голове сложилась полная картина обвязки, можно приступать к удалению ненужных деталек, дорожек и впаивать новые, в соответствии со схемой доработки.

Некоторые резисторы которые уже есть в схему обвязки могут нам подойти без их замены.

Например: нам необходимо поставить резистор на R=2.7кОм с подключением к «общему проводу», но в схеме на этом месте уже стоит R=3кОм, такой разбег не критичен и мы оставляем все как есть без изменений (Рис 3. зеленые резисторы модно не менять).

Размыкание цепи путем поднятия одной из ножек резистора.

Установка дополнительных перемычек.

Перерезанные ненужные дорожки.

Еще приподнятые ножки.

Когда сделали все изменения в обвязке, подключаем выносные переменные резисторы, вольтметр и амперметр. Очень удобные для этого недорогие цифровые приборы из Китая.

Вот такой красавчик вольтметр и амперметр в одном корпусе.

Но можно обойтись и старыми советскими запасами.

Обратите внимание, если внутри амперметра уже есть шунт, то дополнительный в схему устанавливать не надо. Зато надо заменить выходные конденсаторы на выходе +12 вольт, т.к

рабочее напряжение мы подняли до +24 вольт, поэтому конденсаторы должны стоять с рабочим напряжением не ниже 30 вольт

Зато надо заменить выходные конденсаторы на выходе +12 вольт, т.к. рабочее напряжение мы подняли до +24 вольт, поэтому конденсаторы должны стоять с рабочим напряжением не ниже 30 вольт.

Выводим на переднюю панель корпуса переменные резисторы для регулировки напряжения и тока.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Datasheet Download — Fairchild

Номер произв KA7500B
Описание SMPS Controller
Производители Fairchild
логотип  

1Page

No Preview Available !

KA7500B
SMPS Controller
www.fairchildsemi.com
Features
• Internal Regulator Provides a Stable 5V Reference Supply
Trimmed to 5%
• Uncommitted Output TR for 200mA Sink or Source
Current
• Output Control For Push-Pull or Single Ended Operation
• Variable Duty Cycle By Dead Time Control (Pin 4)
Complete PWM Control Circuit
• On-Chip Oscillator With Master or Slave Operation
• Internal Circuit Prohibits Double Pulse at Either Output
Description
The KA7500B is used for the control circuit of the PWM
switching regulator. The KA7500B consists of 5V reference
voltage circuit, two error amplifiers, a flip flop, an output
control circuit, a PWM comparator, a dead time comparator
and an oscillator. This device can be operated in the
switching frequency of 1kHz to 300kHz.
16-DIP
1
16-SOP
1
Internal Block Diagram
2002 Fairchild Semiconductor Corporation
Rev. 1.0.0

No Preview Available !

KA7500B
Absolute Maximum Ratings
Parameter
Supply Voltage
Collector Supply Voltage
Output Current
Amplifier Input Voltage

Power Dissipation (TA = 25°C)

Operating Temperature Range
Storage Temperature Range
Symbol

VCC

VC

IO

VIN

PD

TOPR

TSTG

Value
42
42
250

VCC +0.3

1 (KA7500B)
0.9 (KA7500BD)
0 ~ +70
-65 ~ +150
Unit
V
V
mA
V
W

°C

°C

2

No Preview Available !

Electrical Characteristics

(VCC = 20V, f = 10kHz, TA = 0°C to +70°C, unless otherwise specified)

Parameter
REFERENCE SECTION
Reference Output Voltage
Line Regulation

Temperature Coefficient of VREF

Load Regulation
Short-Circuit Output Current
OSCILLATOR SECTION
Oscillation Frequency
Frequency Change with Temperature
DEAD TIME CONTROL SECTION
Input Bias Current
Maximum Duty Cycle
Symbol

VREF

∆VREF

∆VREF∆T

∆VREF

ISC

f

∆f/∆T

IBIAS

D(MAX)

Input Threshold Voltage

VITH

ERROR AMP SECTION
Input Offset Voltage

VIO

Input Offset Current

IIO

Input Bias Current

IBIAS

Common Mode Input Voltage

VCM

Open-Loop Voltage Gain

GVO

Unit-Gain Bandwidth (Note1)
BW
PWM COMPARATOR SECTION
Input Threshold Voltage

VITH

Input Sink Current

ISINK

OUTPUT SECTION
Output Saturation Voltage
Common Emitter

VCE(SAT)

Common Collector

VCC(SAT)

Collector Off-State Current

IC(OFF)

Emitter Off-State Current

IE(OFF)

TOTAL DEVICE
Supply Current

ICC

OUTPUT SWITCHING CHARACTERISTICS
Rise Time

tR

Common Emitter

Common Collector

Fall Time

tF

Common Emitter

Common Collector

Conditions

IREF = 1mA

VCC = 7V to 40V

TA = 0°C to 70°C

IREF = 1mA to 10mA

VREF = 0V

CT = 0.01µF, RT = 12kΩ

CT = 0.01µF, RT = 12kΩ

VCC = 15V, 0V≤V4≤5.25V

VCC = 15V, V4 = 0V

O.C Pin = VREF

Zero Duty Cycle
Max. Duty Cycle

V3 = 2.5V

V3 = 2.5V

V3 = 2.5V

7V ≤ VCC ≤ 40V

0.5V ≤ V3 ≤3 .5V


Zero Duty Cycle

V3=0.7V

VE = 0, IC = 200mA

VC = 15V, IE = -200mA

VCC = 40V, VCE = 40V

VCC = VC = 40V, VE = 0

Pin 6 = VREF, VCC = 15V







Note:
1. This parameter, although guaranteed, is not 100% tested in production.
KA7500B
Min. Typ. Max. Unit
4.75



10
5.0
2.0
0.01
1.0
35
5.25
25
0.03
15
50
V
mV

%/°C

mV
mA
— 10 — kHz
— — 2%

— -2.0 -10 µA

45 —
-%
— 3.0 3.3
V
0- —
— 2.0 10 mV
— 25 250 mA

— 0.2 1.0 µA

-0.3

VCC

V
70 95 — dB
— 650 — kHz
— 4 4.5 V
-0.3 -0.7 — mV
— 1.1 1.3
V
— 1.5 2.5
— 2 100

µA

— — -100
— 6 10 mA
—-
— 100 200
ns
— 100 200
—-
— 25 100
ns
— 40 100
3

Всего страниц 8 Pages
Скачать PDF

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от — 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от –25 до +85 °С.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Технические характеристики

Вид корпусов ТЛ431

Основные характеристики:

  1. ток на выходе до 100мА;
  2. напряжение на выходе от 2,5 до 36V;
  3. мощность 0,2W;
  4. температурный диапазон TL431C от 0° до 70°;
  5. для TL431A от -40° до +85°;
  6. цена от 28руб за 1 штуку.

Подробные характеристики и режимы работы указаны в даташите на русском в конце этой страницы или можно скачать tl431-datasheet-russian.pdf

Пример использования на плате

Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, не всегда элемент полностью выходит из строя, может просто подгореть.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

↑ Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств? Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей «лаборатории» электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания — обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).

Кроме того, «действия» электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств — не в этой статье, и, быть может, от другого автора. А пока, — лишь о еще одной разновидности электронной нагрузки — импульсной.

TL494 схемы для зарядного устройства на основе компьютерного блока питания

Ниже представлены для повторения четыре принципиальные схемы с использованием ИС TL494 схемы.

Здесь показана схема устройства, созданного на основе устаревшего компьютерного АТ блока питания на IC TL494 с выходной мощностью 200 Вт гарантирующий ток, примерно 11 — 13А.

Здесь схема, в основе которой использован более современный АТX блок питания, также выполненный на TL494

Модернизация

Наиболее важным и нужным моментом в усовершенствовании схемы является следующий шаг. Убираем все ненужные провода, которые выходят из корпуса блока питания на коннекторы материнской платы. Однако, убирать надо не все, оставить нужно четыре провода желтого цвета под напряжение +12v и четыре черных идущих на корпус и каждую «четверку» переплетаем в виде косички.

Далее, ищем на печатной плате чип с кодовым обозначением 494, впереди этого номера возможны дополнительные буквенные обозначения

Также следует обратить внимание, что в БП могут быть установлены аналоги микросхемы TL494, такие как например: KA7500, MB3759, но схема включения у них аналогичная оригиналу. Теперь нужно найти постоянный резистор установленный в цепи первого вывода микросхемы и идущий на контакт +5v (это там, где раннее находились провода красного цвета) и убираем его тоже

Для блока питания с возможностью регулировки напряжения в диапазоне от 4v до 25v, постоянный резистор R1 должен иметь номинальное сопротивление 1кОм. Помимо этого, в выходной цепи постоянного напряжения +12v, необходимо поставить электролитический конденсатор с большей емкостью, чем которая указана в оригинале.

В случае изготовления зарядного устройства, то этот конденсатор лучше вообще не ставить. Далее, желтыми проводами, которые сплетены в «косичку» (+12v), на кольце диаметром 25мм из феррита 2000НМ делаем несколько витков.

То есть, рассчитана на рабочее напряжение 40v и ток 10A, но если найдете готовую сборку BYV42E-200, которая выдерживает прямой ток 30A и напряжение 200v, то лучше будет если вы поставите ее. Как вариант, можно использовать пару выпрямительных диодов КД2999, включенных встречно друг другу. В таблице представленной ниже, можно подобрать оптимальные параметры необходимых вам диодов.

Если блок питания АТХ, то для его запуска нужно соединить провод soft-on с идущим на корпус проводником (на коннектор подается провод зеленого цвета). Вентилятор необходимо повернуть на 180°, что бы поток воздуха направлялся во внутреннюю часть БП. В случае использования устройства по прямому назначению, то тогда лучше будет подать питание на вентилятор от 12 вывода микросхемы через сопротивление с номиналом 100 Ом.

Так же, нужно иметь ввиду, что во время включения блока питания, происходит мощный бросок тока, при этом может включится система защиты. Однако, у меня устройство защиты свободно воспринимает ток в 9 ампер при включении аппарата и не срабатывает. В случае, у кого-то появится такая проблема, то тогда необходимо будет создать двухсекундную задержку включения нагрузки во время старта.

Вот ниже представлен еще один хороший вариант усовершенствования блока питания от компьютера.

Эта принципиальная схема в состоянии изменять выходное напряжение в пределах от 0,9v до 32v и силу тока от 0,09v до 10A.

Предыдущая запись Индикатор сетевого напряжения: светодиодный маяк

Следующая запись Размыкатель цепи: защита от превышения тока

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая – на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность — если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.


Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В – на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для гальванической развязки низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

↑ Схема и описание переделок

В качестве ШИМ-регулятора управления D1 используется микросхема типа TL494. Она выпускается рядом зарубежных фирм под разными наименованиями. Например, IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония) — и т.д. Все эти микросхемы являются аналогами микросхемы КР1114ЕУ4.

Перед модернизацией надо проверить ИБП на работоспособность, иначе ничего путного не выйдет.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров. На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, родная шкала снята, вместо нее установлена самодельная шкала изготовленная с помощью программы FrontDesigner, файлы шкал прилагаются.

Место нижнего гнезда закрываем жестью и сверлим отверстия для резисторов R4 и R10. На задней панели корпуса устанавливаем клеммы Кл1 и Кл2. На плате ИБП оставляем провода идущие от шин GND и +12В, их мы припаяем к клеммам Кл1 и Кл2. Провод PS-ON (если он есть) соединяем на корпус (GND).

Металлическим резаком перерезаем дорожки на печатной плате ИБП идущие к выводам №№1, 2, 3, 4, 13, 14, 15, 16 микросхемы DA1 и подпаиваем детали согласно схеме (Рис. 1).

Все электролитические конденсаторы на шине +12В заменяем на 25-ти Вольтовые. Штатный вентилятор М1 подключаем через стабилизатор напряжения DA2. При монтаже также надо учесть, что резисторы R12 и R13 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору.

Правильно собранное, без ошибок, устройство запускается сразу. Изменяя сопротивление резистора R10, проверяем пределы регулировки выходного напряжения, примерно от 3 – 6 до 18 – 25 В (в зависимости от конкретного экземпляра). Подбираем последовательно с R10 постоянный резистор, ограничив верхний предел регулировки на нужном нам уровне (ну скажем 14 В). Подключаем к клеммам нагрузку (сопротивлением 2 – 3 Ома) и изменяя сопротивление резистора R4 регулируем ток в нагрузке.

Если на наклеечке ИБП было написано +12 V 8 A, то не следует пытаться снять с него 15 Ампер.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.

Производители

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, – словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

TL494CN: схема функциональная (adsbygoogle = window.adsbygoogle || []).push({});

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок

Контакт № 4 – это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА)

Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми транзисторами (MOSFET-транзисторов) с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

П О П У Л Я Р Н О Е:

Сварочный аппарат из телевизионных трансформаторов своими руками

Давно уже не используются старые ламповые телевизоры. Мощные силовые трансформаторы, используемые в них могут пригодиться для изготовления блоков питания, зарядного, пускового устройств или соединив несколько трансформаторов можно даже собрать небольшой сварочный аппарат!

Вы можете установить время и выбранную мелодию на любой день недели.

Возможность запрограммировать время пробуждения на полную рабочую неделю просто бесценно для тех, кто периодически забывает завести будильник.

Существуют схемы усилителей НЧ, пере­датчиков, других устройств, которые требуют питания не только от двуполярного источника, но и от двух гальванически развязанных источ­ников, не имеющих соединения с «землей» или общих связанных цепей. Организовать питание такого устройства в стационарных условиях весьма просто, так как источником питания служит электросеть, а значит будет силовой или импульсный трансформатор. Достаточно сделать две вторичные обмотки, не соединен­ные с другими цепями, и переменные напряже­ния с них подать на отдельные независимые выпрямители. Подробнее…

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.