Содержание
Схема
Импульсный БП состоит из следующих функциональных блоков:
- фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
- выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
- инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
- импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
- выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.
Дроссель переменного тока
Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».
Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.
Существует два способа генерации высокочастотного переменного тока:
- однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
-
двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
- двухполупериодная. Самый простой вариант;
- двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
- прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).
2-тактные БП отличаются схемой силового каскада, есть три модификации:
- полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
- мостовая: более экономична, но сложна в наладке;
- пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.
Стабилизации выходного напряжения добиваются следующими способами:
- применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
- применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.
Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.
При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.
Регулятор напряжения
Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.
Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.
На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.
Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.
С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.
С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.
Схема блок питания на tl494 с регулировкой напряжения и тока
Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока.
Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.
Составные части импульсного блок питания на tl494
Блок питания можно разделить на 3 части:
Внутренний блок питания
Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.
2 Блок управления.
Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.
Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока.
Резисторы R11 и R12 можно использовать многооборотные.
Блок управления можно собрать на отдельной плате.
Печатная плата блока управления
3 Силовая часть
Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.
Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.
Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.
Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.
Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.
Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.
Схема блок питания на tl494 с регулировкой напряжения и тока
Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:
Внешний вид готового блока питания
Схемы блоков питания
Сложные схемы импульсных блоков питания TL494 рассматривать не буду. Они требуют множества деталей и времени, поэтому изготавливать своими руками не рационально. Проще у китайцев купить готовый аналогичный модуль за 300-500руб.
Простой и мощный импульсный БП
Повышающий преобразователь с 12 на 220 Вольт.
При сборке повышающих преобразователей напряжения особое внимание уделяйте охлаждению силовых транзисторов на выходе. Для 200W на выходе будет ток около 1А, относительно не много
Тестирование на стабильность работы проводить с максимально допустимой нагрузкой. Необходимую нагрузку лучше всего сформировать из ламп накаливания на 220 вольт, мощностью 20w, 40w, 60w, 100w. Не стоит перегревать транзисторы более чем на 100 градусов. Соблюдайте правила техники безопасности при работе с высоким напряжением. Семь раз померяй, один раз включи.
Повышающий преобразователь на TL494 практически не требуют настройки, повторяемость высокая. Перед сборкой проверьте номиналы резисторов и конденсаторов. Чем меньше будет отклонение, тем стабильней будет работать инвертор с 12 на 220 вольт.
Контроль температуры транзисторов лучше производить термопарой. Если радиатор маловат, то проще поставить вентилятор, чтобы не ставить новый радиатор.
Блок питания на TL494 своими руками мне приходилось изготавливать для усилителя сабвуфера в автомобиле. В то время автомобильные инверторы с 12В на 220В не продавались, и у китайцев не было Aliexpress. В качестве усилителя УНЧ применил микросхему серии TDA на 80W.
За последние 5 лет увеличился интерес с технике с электрическим приводом. Этому поспособствовали китайцы, начавшие массовое производство электрических велосипедов, современных колесо-мотор с высоким КПД. Лучшей реализацией считаю двух колёсные и одноколесные гироскутеры.В 2015 году китайская компания Ninebot купила американской Segway и начал производства 50 видов электрических скутеров типа Сегвея.
Для управления мощным низковольтным двигателем требуется хороший контроллер управления.
Второй вариант доработки БП
Также добавлю другую проверенную схему.
Недостатком этого решения является использование двух дополнительных диодов и удвоение потерь выпрямителя. После замены резистора вывода 1 TL494 с 24 кОм на 36 кОм, можете снимать примерно до 40 В на выходе.
Ещё приведу фотографии импульсного трансформатора и что с ним делать:
Согласно модификации это должно быть так:
Ш-образные ферриты тут EI33, конечно и с EI28 будет работать, но более 5 A из них не вытянуть.
Что касается родной защиты источников питания AT / ATX, к сожалению большинство из них не имеют защиты от перегрузки по току, единственными средствами защиты являются перенапряжение и пониженное напряжение, а также превышение максимальной мощности, а как мы знаем мощность является произведением тока и напряжения, поэтому если источник питания имеет ограничение 300 Вт и максимум в линии 12 В 10 А, в таком БП до срабатывания защиты, ограничивающей максимальную мощность, произойдёт попытка выдать 25 А, а это приведет к насыщению дросселя и взрыву транзисторов.
Здесь же источник питания переключается в режим регулирования тока при коротком замыкании выхода, и не имеет значения, происходит ли короткое замыкание при низком или максимальном напряжении. Сделан тест — ток транзисторов ограничен коэффициентом трансформации 4 и сглажен на дросселе. Ток мгновенного срабатывания первичной обмотки не должен превышать 2 А, токовый вывод зависит от резистора, поэтому для 100 Ом это будет 1,6 А, для 47 Ом 3,4 А, в любом случае максимальный мгновенный ток силовых транзисторов не должен превышать 6 А.
Импульсный блок питания TL494
Обнаружена недоработка, прошу прощения, но поищите пока себе что то другое!
Один товарищ попросил сделать для него импульсный блок питания для какой то штуки у него в гараже. Как бы питание у этого приборчика не стандартное и нужно 17-18В током до 5 А. Что бы собрать этот блок питания, решил использовать запчасти от старых разобранных ATX, трансформаторов таких у меня просто куча и есть с чего выбрать. Схему питальника использовал ту же, что и в прошлый раз собирал, вот ссылка на ИИП из ATX, только немного ее переделал. Первым делом что я сделал, это немного переделал схему. Пересчитал делители на ОУ под нужные выходные напряжения, убрал фильтр на входе, ну а все остальные компоненты остались такие же.
Вот схема силовой части и драйвера
Вот схема управляющей части на TL494
Разберусь с используемыми компонентами, большинство были заказаны с Китая. Цены на товар с Китая в десятки раз дешевле чем заказывать в интернет магазинах России
Диодный мост KBU1010 заказан был с Китая Две емкости 330мкФ 200В и шунтирующие конденсаторы 0.1мкФ 1000В из блока питания ATX, они еще нормально себя чувствуют Силовые ключи использовал 13007 вот ссылка, мелкие 2SC945 вот ссылка Силовой XZYEI-28C и развязывающий трансформаторWYEE-16C из ATX Выходной сдвоенный диод S10C40 на 10А 40В из того же ATX Дроссель для стабилизации размотал и намотал 24 витка проводом 1мм Все резисторы из Китая, 0,25Вт ссылка, 2Вт ссылка, подстроечный резистор 1кОм ссылка, токоизмерительный резистор 0,1Ом ссылка Конденсаторы электролитические разной емкости ссылка, а так же пленочные ссылка Ну и диоды 1N4148 тоже Китай ссылка, остальные диоды были выбраны из всякого хлама Управляющая TL494 заказана с Китая
Когда все детали определены, пора перейти к разводке печатной платы. Снял все размеры компонентов и принялся за разводку печатки, все заняло часа 3-4.
Печатная плата силовой части и драйвера
Вот печатная плата управляющей части
Силовая часть схемы и развязывающий драйвер буду собирать на печатной плате размером 80*101мм, управляющая часть собрана на отдельном куске текстолита размерами 45*50мм.Скачать печатную плату Прочитайте Получить пароль от архива Ну и пора переходить к сборке, печатных плат. На это было потрачено еще пару часов. Первый пуск источника питания как всегда через лампу, я тут описывал для чего это нужно. Далее испытания проводил уже без лампы, но через предохранитель 1,5А. Вот что у меня получилось
С помощью подстроечного резистора установил напряжение 17,5В, в качестве нагрузки пока выступает вентилятор 12В через балластный резистор 33Ом. Забыл на плате разместить этот балластный резистор, поэтому придется навесом его оставить
Расположение всех компонентов на плате выглядит так, для разрядки высоковольтных конденсаторов балластные резисторы по 120кОм установлены с другой стороны на вывод конденсаторов
Управляющая плата установлена на коротких проводниках из медной проволоки, на плате есть переменный резистор для точной настройки выходного напряжения
Диод и силовые ключи установлены на общий радиатор через прокладки для гальванической развязки, одного радиатора при принудительном охлаждения будет достаточно
Вот перемотанный дроссель для стабилизации напряжения
Две платы собранны максимально плотным монтажем, проверенны в условиях мастерской и готовы отправится в гараж знакомого
Принцип работы
Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.
Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.
Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.
четверг, 29 сентября 2021 г.
Ограничение TL494 по току
ПРИМЕР 3
Тут в этой схеме, к косичке трансформатора подается через полярный конденсатор положительное напряжение это очень важно чтобы на 16 ноге было +V от источника тока или съемной катушке трансформатора. https://radiokot.ru/circuit/power/charger/40/
как это работает в конкретных цифрах:
- При отсутствии тока в нагрузке, падение напряжения на R4 равно нулю. Значит, на делителе будет 5V*R7/(R7+R5), т.е. около 50мВ, на 16-й ноге естественно 0В
- Что же будет при токе, ну допустим, 2А? На R4 возникнет падение напряжения в R4*2A=12mV. Это напряжение на вывод делителя из R5 и R7 приложится в отрицательной полярности, т.е на 15-й ножке ШИМ теперь будет уже не 50мВ, а 50-12=38мВ
- При дальнейшем росте тока нагрузки, будет расти и падение напряжения на R4, а следовательно, и на верхнем по схеме выводе делителя на R5 и R7 отрицательное напряжение будет увеличиваться. При определённом токе, оно достигнет -50мВ, и полностью скомпенсирует изначальные 50мВ холостого хода. Т.е. напряжение на 15-й ноге ШИМ станет равно 0В и сравняется с напряжением на 16-й ноге, которая «сидит» на земле. Компаратор начнёт работать и дальнейшего роста тока нагрузки не произойдёт.
Еще ни много расчета:
1. 15-14 (om) = 10000 om (сопротивление между 14(+5) и 15 ногой) 2. 15-GND (om) = 3 om (сопротивление между 15 ногой и минусом) 3. 16-GND (om) = 0,2 om (сопротивление между 16 ногой и минусом) ————— 4. 15-GND (V) = +5(V) * 15-GND (om) / 15-14 (om) + 15-GND (om) = + 0,00149955 (V) это напряжение падение на 15 ноге. 6. 16 = 15 (A) условие срабатывания инвертирующего компоратора = 15-GND (V) / 16-GND (om) = 0,007497751 (A) это амперы которые необходимо пропустить чтобы 15V = 16V и прерывания сработали.
ПРИМЕР 4
Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.
Источник
Ремонт блока питания для светодиодной ленты
Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!
Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.
Схема, блок питания для светодиодной ленты
Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.
Основные неисправности в этих блоках питания:
- Микросхема ШИМ контроллер – TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
- Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
- Ключевые транзисторы Т10, Т11.
- Сдвоенный диод D33 и конденсаторы С30-С33.
- Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.
Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.
Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.
– на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.
– на 14 выводе должно быть около +5 В.
Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.
Как проверить TL494 без осциллографа?
Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.
Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.
На фото мы подготовили все для замены ШИМ.
Меняем ее на аналог TL494CN.
Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.
Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.
Блок перед финальным тестом.
После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.
Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.
Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!. comments powered by HyperComments
comments powered by HyperComments
Подготовка к переделке
Перед тем, как приступить к работе над созданием лабораторного агрегата, необходимо определиться, какое напряжение и ток вам нужно от него получить, и выбрать подходящий блок питания от компьютера с контроллером TL494 или аналогом.
Это устройство будет иметь защиту от короткого замыкания, перегрева и перегрузки. Это позволит получать плавно регулируемое напряжение от нуля до 25 В, при токе до 8-10 А.
Подготовка агрегата к модификации заключается в отключении вентилятора, выходных электролитических конденсаторов на линиях +12, +5, + 3,3 В и ненужных жил общей разводки. Карта должна иметь желтый, черный, зеленый и сетевой провода.
Какие детали нужно докупить
Чтобы модифицировать силовой модуль вашего компьютера, вам необходимо приобрести некоторые детали и устройства. Радиолюбители могут оказаться в домашней лаборатории.
Электролитические конденсаторы:
- 22 мкФ / 16 В;
- количество остальных элементов и их мощность такие же, как у деталей, свариваемых в процессе подготовки, но они должны выдерживать напряжение не менее 35-40 В.
Резисторы:
- переменная — 22 кОм и 330 Ом;
- постоянная (кОм) — 47, 15, 10, 1,2 и 3 шт. 2.7.
Устройства:
- вольтметр;
- амперметр — желательно с внутренним шунтом.
Схема доработки компьютерного БП
Для начала нужно удалить все ненужные предметы из обвязки TL494. Чтобы не резать рельсы и не искать детали, которые нужно снимать, можно сделать проще: выпарить и приподнять ножки 1-4 и 13-16 микросхемы.
Капитальный ремонт осуществляется навесным монтажом по схеме:
- Между общим проводом и выводами 1, 2 и 4 контроллера припаяны резисторы 2,7, 2,7 и 1,2 кОм соответственно.
- 2-й и 3-й контакты TL494 подключены через резистор 47 кОм и конденсатор 0,01 мкФ (он находится на плате).
- Между первой ногой и шиной +12 В установлен регулятор на 22 кОм — он будет изменять напряжение на выходе блока питания. Туда же припаян положительный провод вольтметра.
- Пятнадцатый вывод подключен к центральному выводу переменного резистора 330 Ом. Он будет регулировать ток.
- один из его концов идет «в минус», а второй проходит через резистор 10 кОм на выводах 13 и 14, спаянных между собой.
- шестнадцатая ветвь микросхемы подключена к «минусу» через амперметр».
- 14-й вывод подключен ко 2-й и 4-й ногам TL494 через резистор 2,7 кОм и параллельный конденсатор 22 мкФ / 16 В и сопротивление 15 кОм соответственно.
- Устройства подключаются к плате кабелем длиной 10-20 см.
- Припаиваются электролитические конденсаторы на 35-40В.
- Зеленый провод соединен переключателем с «минусом» платы.
Напряжение
После этих изменений на линиях +12 и +5 В напряжение будет установлено на + 25-30 и +10 В. Это можно проверить с помощью тестера.
Далее устанавливается вентилятор. Поскольку он подключен к линии 10 В, это приведет к небольшому снижению скорости вращения.
Источники
- https://Zapitka.ru/masterskaya/peredelka-kompyuternogo-bloka-pitaniya-v-laboratornyy
- https://datagor.ru/practice/power/2246-peredelka-bloka-at-v-reguliruemyy-bolk-pitaniya-0-30v-0-11a.html
- https://SdelaySam-SvoimiRukami.ru/3871-laboratornyy-istochnik-pitaniya-iz-bp-kompyutera.html
- https://Acums.ru/bespereboyniki-i-bloki-pitaniya/skhemy-peredelki-v-laboratorniy-ili-reguliruemiy-v-zaryadnoe-ustroystvo
- https://CleverDIY.ru/kak-samomu-sdelat-blok-pitaniya-iz-kompyuternogo-bp
- https://radioskot.ru/publ/bp/laboratornyj_bp_s_zashhitoj_iz_obychnogo_kompjuternogo/7-1-0-1063
Отличия импульсного блока питания от обычного трансформаторного
Схема трансформаторного стабилизированного источника питания.
Традиционный «трансформаторный» блок питания строится по схеме: трансформатор — выпрямитель с фильтром — стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.
В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.
Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.
В видео-сравнение линейного и импульсного блоков питания.
К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.
Функции выводов входных сигналов
Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.
Вывод 1
Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.
Вывод 2
Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.
Вывод 15
Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).
Вывод 16
Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.
Вывод 3
Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий
Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна
В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).
Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).
Вывод 4
Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control)
Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.
Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е
не будет выходного напряжения от ИБП.
Вывод 5
Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).
Вывод 6
Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.
f = 1,1 : (Rt х Ct).
Вывод 7
Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.
Вывод 12
Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.
Вывод 13
Это вход режима работы. Его функционирование было описано выше.