Как перемотать трансформатор своими руками: личный опыт расчета и технология выполнения работы для начинающего мастера

Содержание

Как ускорить рабочий процесс

У многих радиолюбителей в арсенале имеются простые специальные агрегаты, с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.

На оси надеваются катушечные каркасы, которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).

Это интересно: Подключение трансформатора тока — описываем все нюансы

Размотка проволоки

Если в качестве источника проволоки для намотки вы планируете использовать старый трансформатор, то облегчить и ускорить работу можно при помощи небольшого размоточного станка. Его использование позволяет равномерно извлекать проволоку, избегая рывков и повреждений изоляции. Принцип действия и строение устройства напоминают намоточный станок, но движения катушки происходят в обратном направлении.

Довольно простое в изготовлении и использовании приспособление выглядит практически так же, как и ручной станок. Отличие заключается в отсутствии ручки и наличии приспособления для фиксации пустотелого корпуса трансформатора на металлической оси. Закрепляют корпус при помощи свернутого в многослойную трубку куска картона, бумаги или любого другого подходящего материала. Так, можно будет обеспечить плавность размотки, отсутствие скачков и ударов катушки об ось.

Рисунок 5. Станок со шпильками.

Немного усложнив конструкцию и добавив в нее фиксаторы из деревянных, металлических или текстолитовых пластин, можно сделать приспособление гораздо более удобным в применении. Вместо металлической оси в таком случае используют шпильку с резьбой диаметром 6 мм. Она будет не просто свободно вращаться в стойках, а фиксироваться системой гаек-барашков (рис. 5).

При размотке мощных трансформаторов между первичной и вторичной обмотками можно обнаружить изоляционный материал. Не следует его выбрасывать, так как он обладает повышенной надежностью и пригодится при конструировании вашего устройства. Помимо этого, во время разборки старого трансформатора вы встретитесь с такой проблемой, как отдельные слои проволоки, покрытые прозрачным материалом – специальным лаком. Не нужно пытаться снять или соскрести его, так как в процессе можно легко повредить тонкую внешнюю обмотку проволоки. Лучше всего разматывать такой трансформатор на станке, делая плавные и медленные движения, при этом проволока сама будет нормально отходить.

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Как я сделал станочек для намотки трансформаторов, простой и точный

При наличии времени и терпения это устройство вполне справлялось, один недостаток — обе руки заняты. Одной приходится крутить ручку, другой укладывать провод. И решил я этот процесс немного усовершенствовать. В закромах копились годами всякие механизмы, электродвигатели и редукторы. Пришло время пустить их на благое дело. Решение было таким: сделать настольный намоточный станок с электроприводом, механическим счетчиком витков и ручным приводом укладчика провода.

Для корпуса

был выбран листовой гетинакс толщиной 6 мм, хороший прочный материал. Выпилил две одинаковые боковые стенки, сразу разметил отверстия для валов. К основанию трансомоталки (также из гетинакса) прикрепил боковые стенки через алюминиевые уголки. Отверстия под вращающиеся валы были расширены для запресовки подшипников.

На боковой стенке, противополжной к приводу, сделано отверстие для подшипника и вертикальная прорезь сверху для удобства снятия приводного вала. С внутренней стороны сделан упор для подшипника, а с наружней стороны откидная скоба, чтобы фиксировать подшипник в его седле. Подняв скобу, можно вытащить вал вместе с левым подшипником. Правый остается в правой стенке.

Механический счетчик

был извлечен из спидометра какого-то ВАЗа. Сначала привод счетчика был сделан через резиновый пасик.

Благо нашлось две одинаковых шестерни. Одну из которых установил на рабочий вал, а другую на вал привода счетчика. Теперь с количеством намотанных витков и показаниями счетчика расхождений нет.

Привод

сделан из низковольтного (12В) двигателя в комплекте с понижающим редуктором. Питание двигателя от трансформатора ТН.

Для регулировки скорости

намотки используется переключатель питания: 6В или 12В. Также смонтирован переключатель «намотка-нейтраль-реверс» и пружинная кнопка для подачи напряжения на привод.

Механический укладчик

также прост и удобен в работе. Каретка укладчика приводится в движение вращением рукоятки вала диаметром 8 мм, сделанного из шпильки с резьбой по всей длине. Каретка движется по направляющей, взятой из струйного принтера, диаметром также 8 мм. На фото все прекрасно видно.

К диаметру провода легко приноровиться и левой рукой нужно с определенной частотой проворачивать вал укладчика, чтобы провод ложился виток к витку.

На этом простом устройстве уже намотано 3 выходных и 3 силовых трансформатора под двухтактные ламповые усилители для гитарных комбо типа Fender 5e3 на 6V6 и JCM800 на EL34. Но об этом в следующий раз.

Комментарии (20)

Информация

Вы не можете участвовать в комментировании. Вероятные причины: — Администратор остановил комментирование этой статьи. — Вы не авторизовались на сайте. Войдите с паролем. — Вы не зарегистрированы у нас. Зарегистрируйтесь. — Вы зарегистрированы, но имеете низкий уровень доступа. Получите полный доступ.

Трансформатор и особенности его конструкции

Такое устройство, как трансформатор включает в себя следующие компоненты: сердечник (магнитный провод); обмотка, размещённая на нём.

Обмотка, которая подключена к источнику преображаемого напряжения, называется первичной, а та, к которой подключаются источники потребления электроэнергии – соответственно, вторичной. По назначению трансформаторы бывают:

  • импульсными;
  • приборами питания;
  • согласовывающими.

Требуемые расчёты по приборам на основе старых устройств своими руками, провести практически невозможно, поскольку крайне сложно отыскать нужное железо и намоточный провод. Поэтому приходится брать магнитный провод с мощностью, которая превышает потребности и увеличивает размеры трансформаторов.

Особенности

Внешний вид сварочного аппарата состоящего из самостоятельно собранного трансформатора не будет соответствовать производственному образцу, понимайте эту особенность.

Следующую особенность, которую следует учесть – постоянная смена характеристик. Даже установка их вручную не спасает.

Поясню, установив, например, ампераж в 120, агрегат на самодельном трансформаторе каждый раз будет выдавать значение меньше или большее. Такое отклонение будет все время.

Конечно, она не критична, но, если ваша работа предусматривает щепетильности, рекомендуем рассмотреть вариант с покупкой готового аппарата.

Основные преимущества и недостатки

При использовании тороидальных трансформаторов, поставляемых со свободными витыми выводами, можно добиться экономии до 64 % занимаемого объёма по сравнению с обычными трансформаторами с шихтованными сердечниками (очень часто легче подключить оборудование именно с помощью выводов из трансформатора, а не клеммников).

Тороидальный (кольцевой) сердечник имеет идеальную форму, позволяющую изготовить трансформатор, используя минимальное количество материала. Все обмотки симметрично распределены по всей окружности сердечника, благодаря чему значительно уменьшается длина обмотки.


Главные плюсы и минусы тороидальных трансформаторов.

Это ведёт к уменьшению сопротивления обмотки и повышению коэффициента полезного действия. Возможна более высокая магнитная индукция, так как магнитный ток проходит в том же направлении, в каком ориентирована кремнистая сталь ядра во время прокатки. Также можно отметить плюсы:

  • низкие показатели рассеивания;
  • меньший нагрев;
  • низкий вес и размер;
  • компактен, удобен в установке в электроаппаратуре.

Можно использовать более высокую плотность тока в проводах, так как вся поверхность тороидального сердечника позволяет эффективно охлаждать медные провода. Потери в железе очень низки – типическое значение составляет 1,1 Вт при индукции 1,7 Тл и частоте 50/60 Гц. Это обеспечивает очень низкий ток намагничивания, способствующий изумительной тепловой нагрузочной способности тороидального трансформатора.


Тороидальный трансформатор

Почему это самый популярный вид трансформаторов

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам: во-первых, экономия материалов на производстве, во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест, в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора. Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше, чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.


Обмотка тороидального трансформатора.

Охлаждение обмоток — еще один важный фактор. Обмотки эффективно охлаждаются, будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Будет интересно Необходимые условия для выполнения параллельной работы трансформаторов

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, – и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Намотка тороидального трансформатора

Намотка тороидального трансформатора – это достаточно сложный процесс, который занимает много времени. Тороидальный трансформатор имеет одну из наиболее сложных намоток. Наиболее простым способом считается использование специального челнока. На него следует намотать провод нужной длины и затем его через отверстия. Он имеет сложную конструкцию, но это не влияет на принцип работы трансформатора тороидального. После пропуска через челнок у вас начнет формироваться соответствующая обмотка.

Челнок обычно изготавливается из дерева. Его толщина составляет 6 мм длина 40 см, а ширина 4 см. В его торцах вам следует сделать полукруглые вырезы. Для оценки его длины вам необходимо намотать провод на челнок, а значение умножить на количество витков. В этом случае запас должен составлять 20%.

Намотку необходимо делать с помощью кругового челнока. В качестве заготовки вам могут послужить согнутые пластмассовые трубы или обруч. Обруч необходимо распилить в одном месте и продеть его сквозь внутреннее окно сердечника. Провод в нескольких местах следует зафиксировать изолентой. Она не даст вашему проводу рассыпаться.

Надеемся, что благодаря этой статье вы самостоятельно сможете изготовить тороидальный трансформатор своими руками.

https://youtube.com/watch?v=hPIKQTymC1o

Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.

Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.

Тороидальный двигатель

Тороидальные двигатели с граммовской обмоткой обеспечивают выполнение в малых габаритах многополюсной системы и дают возможность создать асинхронные высокочастотные низкоскоростные двигатели.

Тороидальные двигатели имеют малые потоки. По этой причине они имеют большое число витков в фазе по сравнению с двигателями нормального исполнения. При мощностях, меньших 1 вт, и напряжениях питания 127, 220 в намоточный провод имеет диаметр меньше 0 1 мм. Мотать обмотку тонким проводом трудно. По этой причине выполнять тороидальные двигатели мощностью Pz0j вт на напряжение 127, 220 в целесообразно только для специальных целей.

Характеристика намагничивания и петли гистерезиса сплава 25КХФ.

Гистерезисный тороидальный двигатель с Р4 вт, 2р4, f 50 гц, t / 220 в выполнен по схеме рис. 1 — 4 и имеет синусную обмотку. Статор макетного образца навит из стали Э320 толщиной 0 2 мм. Ротор набран из листов толщиной 0 7 мм. После механической обработки пакет ротора имеет толщину 3 4 мм вместо 3 7 мм по расчету. Воздушный зазор между ротором и статором равен 0 33 мм вместо 0 25 мм по расчету. Увеличение зазора связано с тем, что обычные радиальные подшипники, примененные в двигателе, при нагрузке создают перекос, и при расчетном зазоре ротор залипает.

Гистерезисные тороидальные двигатели наряду с другими двигателями с успехом можно использовать в механизмах, где требуется двигатель небольшой мощности, малой массы и стоимости: в программных механизмах, бытовых магнитофонах и радиолах, в системе единого времени, в реле времени.

Рассматриваемые тороидальные двигатели с постоянными магнитами предназначены для приборов, в которых они нагружены моментом трения. Этот момент сопротивления ( обычно в опорных камнях) очень мал, мала и инерционность ротора. Поэтому такие двигатели пускаются без специальных устройств.

Недостатком торцевых тороидальных двигателей является значительный момент инерции, препятствующий широкому использованию тороидальных асинхронных двигателей в малоинерционных системах автоматики.

Поскольку обмотка тороидального двигателя по принципу выполнения однослойная без укорочения, то при такой обмотке кривая поля в воздушном зазоре имеет значительную третью гармонику, которая особенно нежелательна в двухфазной машине. Для уничтожения этой гармоники целесообразно расположить проводники по пазам неравномерно.

Каждый тип тороидального двигателя имеет свои особенности расчета, речь о которых будет идти ниже. Но независимо от типа и конструктивного варианта общим для всех них является наличие лобовых частей, расположенных по образующим внутренней и наружной поверхностей тороида-статора. Сопротивление рассеяния тороидальной обмотки определяется потоками рассеяния с наружной и внутренней сторон тороида, с ребер торои-да, а при обычном исполнении двигателя и с торцевых поверхностей тороида.

Ввиду особенности тороидального двигателя с торцевыми дисковыми роторами ( наличия двух симметричных роторов на валу по торцам тороида) целесообразно расчет вести на половинную, мощность модели.

Предложенная методика расчетов тороидальных двигателей подходит для постановки их решения на цифровых вычислительных машинах.

Все рассмотренные исполнения тороидальных двигателей имеют простую конструкцию и технологию изготовления. Для сокращения вспомогательного времени на механическую обработку деталей целесообразно использовать литье под давлением, штамповку, пресс-формы. Путем штамповки получаются роторы-зубчатки для двигателей с постоянными магнитами, роторы-диски для асинхронного и гистерезисного двигателей. Значительно упрощает изготовление постоянных магнитов феррито-вых тороидов с пазами использование ультразвука и пресс-форм при изготовлении их из спецпорошков.

Так же как и асинхронные тороидальные двигатели с двусторонним расположением дисков-роторов, гистере-зисные двигатели целесообразно считать на половинную мощность — мощность, приходящуюся на один диск ротора. При этом некоторые коэффициенты, определяющие оптимальное проектирование, будут иметь выражения, отличные от выражений для двигателей нормального исполнения. Эти отличия определяются особенностями геометрии тороидальной конструкции двигателя. Вопрос оптимального проектирования сводится к определению главных размеров тороида и ротора, оптимальной индукции в воздушном зазоре машины и в роторе.

Здесь рассмотрен подход к расчету тороидальных двигателей с постоянными магнитами, конструкции которых рассмотрены в гл.

1 Устройство самодельного намоточного станка

В промышленных условиях используются специальные приспособления для массового производства различных типов электрических катушек и трансформаторов. Производство однотипных изделий позволяет вкладывать финансовые средства в скоростное, автоматическое оборудование для увеличения количества выпускаемой продукции.

В работе своими руками при ремонте, восстановлении, создании новых катушек или трансформаторов, необходимости в полной автоматизации процесса перемотки нет, но метод ручной укладки каждого витка проволоки устраивает далеко не всех мастеров. Поэтому появилась практика создания своих собственных моделей.

Самым простым вариантом является ручной намоточный станок, сделанный своими руками, который оснащен регулируемым укладчиком и счетчиком витков

При его создании следует уделить внимание лишь нескольким условным требованиям:

  • простота конструкции;
  • использование подручных материалов;
  • возможность намотки катушек разного размера и конфигурации.

Устройство простейшего самодельного намоточного станка для трансформаторов

Примером такого станка сделанного своими руками может послужить такая конструкция, работающая по принципу колодезного ворота:

  • основание с двумя вертикальными стойками, сделанными из дерева или фанеры;
  • горизонтальная ось, закрепленная на стойках сделанная из толстой проволоки один конец которой выгнут в форме ручки для вращения;
  • две трубки одетые на ось, на одной из которых размещена деревянная колодка, которая фиксируется шпилькой из металла и имеет клин для надежной фиксации на вращающейся оси;
  • счетчик витков (велосипедный одометр), который подсоединяется к свободному концу оси через плотную резиновую трубку или витую пружину подходящего сечения.

Принцип работы такого устройства основан на насаживании каркаса трансформатора на ось устройства, и вращении своими руками ворота с ручным контролем плотности укладки провода и визуальным — по отсчету витков.

1.1 Намотка тороидальных трансформаторов

Широкое применение тороидальных трансформаторов в бытовой технике и приборах дающих низковольтное освещение, создает необходимость в станке, а точнее, приспособлении, которое поможет намотать проволоку на каркас круглой замкнутой формы.

В промышленных условиях используются специальные кольцевые станки для качественной намотки тороидальных трансформаторов. В домашних же условиях, приходится мотать вручную долго и без гарантии качественной ровной укладки проволоки.

Приспособление в виде челнока, который работает по принципу швейной иглы, несколько облегчает работу по намотке тороидальных трансформаторов, но в недостаточной степени.

Станок для намотки тороидальных трансформаторов

Для создания более производительного устройства по намотке тородоидальных трансформаторов потребуется обод велосипедного колеса. Он закрепляется на стене при помощи штыря и имеет резиновое кольцо для закрепления проволоки.

Так как обод является цельным, то для того чтобы одевать на него каркасы тородоидальных трансформаторов, его необходимо будет разрезать и затем скрепить разборными пластинами.

Намотка тороидальных катушек при помощи этого приспособления происходит следующим образом:

  • на разъединенный обод одевается подготовленная к намотке катушка;
  • пластинами скрепляют (соединяют) обод, чтобы он являлся цельным кругом;
  • наматывают на него необходимое количество проволоки;
  • присоединяют конец провода к свободно перемещающейся по ободу катушке;
  • начинают передвигать катушку по ободу полными кругами, за счет чего проволока сама укладывается на каркас трансформатора.

При выполнении такой, практически ручной намотки, необходимо следить за натяжением проволоки и плотностью витков.

Обод велосипедного колеса подходит лишь для катушек большого размера. Этот же принцип намотки, для небольших тороидальных трансформаторов, можно применять, используя любое плоское кольцо подходящих размеров.

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

  • Относительно небольшие размеры.
  • Очень сильный выходной сигнал.
  • Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
  • Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.

Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.

Расчет мощности тороидального трансформатора

Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.

Мощность будущего трансформатора рассчитывается по следующей формуле:

P=U*I*cosf/n

U — напряжение холостого хода

I — сила тока

cos f — коэффициент мощности, равный 0.8

n — коэффициент полезного действия, равный 0.7

Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.

После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:

N=4960*U/(S*I)

U — напряжение тока на первичной обмотке.

I — ток вторичной обмотки, или сварочный ток.

S — площадь сечения магнитопровода.

Количество витков на вторичной обмотке вычисляется по следующей формуле:

U1/U2=N1/N2

Тороидальный сердечник

Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.

Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.