Регулируемый блок питания своими руками

Содержание

↑ Монтаж

Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм. Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт. Плата позволяет легко заменить при необходимости модуль DC-DC. Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Как все работает

Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2

Важно учесть, что именно он оказывает влияние на качество выходного сигнала

Лабораторный БП на Ардуино

Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.

Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.

Регулируемый блок питания лабораторный на lm317 (схема)

В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.

В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.

Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.

С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.

Схематическое изображение функционала

Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Схема

Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
  3. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
  4. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Видео ролик подключения вольтамперметра DSN-VC288

на 100В и 10А (подробное описание дам в отдельной статье):

Инструменты, которые пригодятся при изготовлении нашего прибора:

1. Паяльник. 2. Отвертки. 3. Сверлильный станок или дрель. 4. Сверла. 5. Напильник или надфиль. 5. Наждачная шкурка. 6. Канцелярский нож. 7. Гаечные ключи. 8. Измерительный инструмент, как минимум линейка. 9. Начертательный инструмент, карандаш. 10. Кернер. 11. Пассатижи или плоскогубцы. 12. Отрезная машинка (болгарка) с отрезным кругом и шлифовальным.

Нужные Расходные материалы:

1. Припой. 2. Паяльная кислота. 3. Болты и гайки. 4. Монтажные провода. 5. Повышающий преобразователь напряжения. 6. Вольтамперметр 100В, 10А. 7. Вилочки, разъемчики и прочая мелочь. 8. Выключатель. 9. Переменный резистор. 10. Термоусадочные трубки.

Порядок изготовления регулируемого блока питания:

1. Найти старый, рабочий компьютерный блок питания. 2. Вскрыть, основательно, но аккуратно почистить от накопившейся пыли и грязи. 3. Выпаять из связки лишние провода, оставить черный минус питания, желтый 12В плюс, оранжевый 3.3В плюс, красный 5В плюс, и зеленый для включения блока питания. 4. На лицевой панели блока питания высверлить и развернуть напильником отверстия для монтажа приборов контроля, ручек управления и разъемов снятия напряжения с нашего прибора. 5. Выпаять из повышающего преобразователя напряжения подстроечный резистор, на его место впаять переменный резистор 10 ком. 6. Провести пайку проводов блока питания, подробно показано в видео ролике, не пугайтесь, все очень просто, главная проблема не обжечь пальцы паяльником :-). 7. На лицевой панели разместить и закрепить вольтамперметр, ручку управления, выключатель и разъемы снятия напряжения. 8. Подключить подготовленные провода к вольтамперметру, ручке управления, выключателю и разъемам снятия напряжения. 9. Подключенный через монтажные провода повышающий преобразователь напряжения разместить и зафиксировать в нашем блоке питания. Штатное место показано в видеоролике. 10. Собрать корпус получившегося блока питания. 11. Подключить блок питания к сети 220В. 12. Щелкнуть тумблером включения прибора. 13. На вольтамперметре должно высветится напряжение. 14. Провести настройку и тестирование регулируемого блока питания под нагрузкой.

Технический анализ:

Плюсы: 1. бюджетные затраты на комплектующие конструкции. 2. достаточная компактность. 3. Простота изготовления. 4. Простота эксплуатации.Минусы: 1. Недостаточная точность прибора, от 10 мА. 2. Напряжение регулируется от 12В. 3.3 и 5В фиксированное напряжение. Но над этим работаем.

СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ

А. ПОГОРЕЛЬСКИЙ, пос. Пойковский Тюменской обл.

Описываемый блок питания собран из доступных элементов. Он почти не требует налаживания, работает в широком интервале подводимого переменного напряжения, снабжен защитой от перегрузки по току.

Предлагаемый блок питания позволяет получать выходное стабилизированное напряжение от 1 В почти до значения выпрямленного напряжения с вторичной обмотки трансформатора (см. схему). На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3 на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1 R1), а на эмиттер — выходное напряжение с делителя R14R15. Сигнал рассогласования поступает на усилитель тока, выполненный на транзисторе VT2, который управляет регулирующим транзистором VT4.

При замыкании на выходе блока питания или чрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8. Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2, ограничивая тем самым ток нагрузки. Светодиод HL2 сигнализирует о включении защиты от перегрузки потоку.

Файлы

Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А

Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.

Фото блоков питания своими руками

Также рекомендуем просмотреть:

  • Вентилятор своими руками
  • Прикормка своими руками
  • Откатные ворота своими руками
  • Ремонт компьютера своими руками
  • Станок по дереву своими руками
  • Столешница своими руками
  • Брусья своими руками
  • Лампа своими руками
  • Котел своими руками
  • Установка кондиционера своими руками
  • Отопление своими руками
  • Фильтр для воды своими руками
  • Как сделать нож своими руками
  • Усилитель сигнала своими руками
  • Ремонт телевизора своими руками
  • Зарядное для аккумулятора своими руками
  • Точечная сварка своими руками
  • Дымогенератор своими руками
  • Металлоискатель своими руками
  • Ремонт стиральных машин своими руками
  • Ремонт холодильника своими руками
  • Антенна своими руками
  • Ремонт велосипеда своими руками
  • Сварочный аппарат своими руками
  • Холодная ковка своими руками
  • Трубогиб своими руками
  • Дымоход своими руками
  • Заземление своими руками
  • Стеллаж своими руками
  • Светильник своими руками
  • Жалюзи своими руками
  • Светодиодная лента своими руками
  • Нивелир своими руками
  • Замена ремня ГРМ своими руками
  • Лодка своими руками
  • Как сделать насос своими руками
  • Компрессор своими руками
  • Усилитель звука своими руками
  • Аквариум своими руками
  • Сверлильный станок своими руками

Подготовка к переделке

Перед тем, как приступить к работе над созданием лабораторного агрегата, необходимо определиться, какое напряжение и ток вам нужно от него получить, и выбрать подходящий блок питания от компьютера с контроллером TL494 или аналогом.

Это устройство будет иметь защиту от короткого замыкания, перегрева и перегрузки. Это позволит получать плавно регулируемое напряжение от нуля до 25 В, при токе до 8-10 А.

Подготовка агрегата к модификации заключается в отключении вентилятора, выходных электролитических конденсаторов на линиях +12, +5, + 3,3 В и ненужных жил общей разводки. Карта должна иметь желтый, черный, зеленый и сетевой провода.

Какие детали нужно докупить

Чтобы модифицировать силовой модуль вашего компьютера, вам необходимо приобрести некоторые детали и устройства. Радиолюбители могут оказаться в домашней лаборатории.

Электролитические конденсаторы:

  • 22 мкФ / 16 В;
  • количество остальных элементов и их мощность такие же, как у деталей, свариваемых в процессе подготовки, но они должны выдерживать напряжение не менее 35-40 В.

Резисторы:

  • переменная — 22 кОм и 330 Ом;
  • постоянная (кОм) — 47, 15, 10, 1,2 и 3 шт. 2.7.

Устройства:

  • вольтметр;
  • амперметр — желательно с внутренним шунтом.

Схема доработки компьютерного БП

Для начала нужно удалить все ненужные предметы из обвязки TL494. Чтобы не резать рельсы и не искать детали, которые нужно снимать, можно сделать проще: выпарить и приподнять ножки 1-4 и 13-16 микросхемы.

Капитальный ремонт осуществляется навесным монтажом по схеме:

  1. Между общим проводом и выводами 1, 2 и 4 контроллера припаяны резисторы 2,7, 2,7 и 1,2 кОм соответственно.
  2. 2-й и 3-й контакты TL494 подключены через резистор 47 кОм и конденсатор 0,01 мкФ (он находится на плате).
  3. Между первой ногой и шиной +12 В установлен регулятор на 22 кОм — он будет изменять напряжение на выходе блока питания. Туда же припаян положительный провод вольтметра.
  4. Пятнадцатый вывод подключен к центральному выводу переменного резистора 330 Ом. Он будет регулировать ток.
  5. один из его концов идет «в минус», а второй проходит через резистор 10 кОм на выводах 13 и 14, спаянных между собой.
  6. шестнадцатая ветвь микросхемы подключена к «минусу» через амперметр».
  7. 14-й вывод подключен ко 2-й и 4-й ногам TL494 через резистор 2,7 кОм и параллельный конденсатор 22 мкФ / 16 В и сопротивление 15 кОм соответственно.
  8. Устройства подключаются к плате кабелем длиной 10-20 см.
  9. Припаиваются электролитические конденсаторы на 35-40В.
  10. Зеленый провод соединен переключателем с «минусом» платы.

Напряжение

После этих изменений на линиях +12 и +5 В напряжение будет установлено на + 25-30 и +10 В. Это можно проверить с помощью тестера.

Далее устанавливается вентилятор. Поскольку он подключен к линии 10 В, это приведет к небольшому снижению скорости вращения.

Источники

  • https://Zapitka.ru/masterskaya/peredelka-kompyuternogo-bloka-pitaniya-v-laboratornyy
  • https://datagor.ru/practice/power/2246-peredelka-bloka-at-v-reguliruemyy-bolk-pitaniya-0-30v-0-11a.html
  • https://SdelaySam-SvoimiRukami.ru/3871-laboratornyy-istochnik-pitaniya-iz-bp-kompyutera.html
  • https://Acums.ru/bespereboyniki-i-bloki-pitaniya/skhemy-peredelki-v-laboratorniy-ili-reguliruemiy-v-zaryadnoe-ustroystvo
  • https://CleverDIY.ru/kak-samomu-sdelat-blok-pitaniya-iz-kompyuternogo-bp
  • https://radioskot.ru/publ/bp/laboratornyj_bp_s_zashhitoj_iz_obychnogo_kompjuternogo/7-1-0-1063

Блок питания своими руками: как сделать универсальный источник питания

Блок питания является неотъемлемым требованием любой техники. Благодаря этому устройству удается регулировать уровень напряжения, тем самым предотвращая преждевременную поломку электрической конструкции.

Сегодня собрать регулируемый блок питания своими руками достаточно просто. В интернете представлено множество схем, которые помогают облегчить поставленную задачу даже для новичков радиолюбителей. Процесс изготовления этой конструкции довольно увлекательное и интересное занятие.

Перед тем как приступить к рабочему процессу, необходимо подобрать простую схему для изготовления блока питания. Чем легче чертеж, тем быстрее удастся собрать установку. В специализированных магазинах представлен широкий ряд радио и электрических деталей для данной конструкции.

Разновидности и типы блоков питания

Перед тем как приступить к сборке устройства, необходимо ознакомиться с видами и типами блоков питания. Каждая модель имеет свои характерные особенности.

К ним относят:

  • стабилизированные типы. Они отвечают за бесперебойную работу электрического устройства;
  • бесперебойные виды. Они позволяют работать прибору даже при отключении от электрической цепи.

Классификация по принципу работы

По принципу работы они классифицируются на следующие типы. К ним относят:

Импульсный. Он представляет собой инверторную систему, в которой происходит преобразование переменного тока в постоянное высокочастотное напряжение.

Для того чтобы сделать импульсный блок питания своими руками необходимо приобрести специальную гальваническую развязку, которая будет передавать преобразованную мощность к трансформаторной установке.

Трансформаторный. Он состоит из понижающего трансформатора и специального выпрямителя. Он в дальнейшем преобразовывает переменную мощность в постоянную. Здесь дополнительно устанавливают фильтр-конденсатор. Он позволяет сгладить чрезмерную пульсацию и колебания в процессе работы устройства.

Мастер-класс по изготовлению регулируемого блока питания

Как сделать подобное устройство в домашних условиях? Подробная инструкция как сделать блок питания своими руками поможет справиться с поставленной задачей. Первым делом необходимо иметь четкое представление, для каких целей будет собрано это устройство.

Главными принципами работы сооружения является подача максимального тока, который в дальнейшем будет направлен в сторону нагрузки. Помимо этого он будет обеспечивать выходное напряжение. Благодаря этому электрический прибор может нормально функционировать.

Например, устройство на выходе дает от 3 до 15 Вт, а прибор требует 5 Вт. Для этого определенным положением регулятора меняем диапазон преобразованной мощности.

Из чего можно сделать блок питания?

Для понадобятся следующие детали:

  • трансформатор;
  • диодный мост;
  • микросхема;
  • конденсаторный фильтр;
  • дросселя;
  • блоки защиты;
  • стабилизатор напряжения.

Трансформатор может иметь мощность в пределах 10 Вт. Как правило, его обмотка способна выдержать напряжение от 220 Вт до 250 вт. Вторичная обмотка проводит от 20 до 50 Вт.

Эту деталь можно купить в специализированном отделе или найти в любом старом электроприборе.

Микросхема выпускается под определенной маркировкой (PDIP – 8). Здесь можно делать неограниченное количество проводящих электрических дорожек.

Диодный мост делают из четырех диодов размером 0,2 х 0,5 мм. Изделия серии SOIC значительно уменьшают перепады электрического напряжения.

Блоки защиты будут выполнены из двух предохранителей марки FU2. При срабатывании данных изделий вырабатывается ток мощностью 0,16А. Дроссели L1 и L2 можно сделать самостоятельно. Для этого понадобятся два элемента из магнитного феррита. Их размер должен быть К 17,5 х 8,3 х 6 мм.

Подсоединение всех элементов осуществляются по определенной схеме, которая представлена ниже. Здесь каждая деталь обозначена соответствующим обозначением. На фото самодельного блока питания изображено готовое устройство.

Что нужно учитывать

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит.
К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон

Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Для подачи напряжения на этот БП служит механический выключатель

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.

Корпус самодельного блока питания

Для БП использован корпус модели Z17W. Печатная плата размещается в нижней части, прикручиваясь к днищу винтами 3 мм. Под корпусом приделаны резиновые черные ножки от какого-то прибора, вместо жестких пластиковых, которые были в комплекте

Это важно, иначе при нажатиях на кнопки и вращении регуляторов блок питания будет «ездить» по столу

Блок питания регулированый: самодельная конструкция

Надписи на лицевой панели сделаны в графическом редакторе, затем печать на меловой самоклеющейся бумаге. Вот такая вышла самоделка, а если вам мало такой мощности — смотрите схему БП на 300 Ватт.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301

Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2

Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели. Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.
Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

Выбираем уличный датчик движения для включения света

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.

Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см

При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!