Что такое импульсный блок питания и где применяется

Содержание

tibirium › Блог › Самодельный импульсный блок питания с регулировкой напряжения и тока.

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные. При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

3 Силовая часть.

Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Комментарии 196

Здравствуйте. Мне очень понравился данный блок питания. Скачал архив, но он не открывается. Пишет, что архив поврежден. Заранее спасибо!

Здравствуйте. Проверил, всё работает. Проблема у вас, попробуйте обновите архиватор.

Да действительно. Обновил архиватор и все получилось. Большое спасибо Вам.

Да я имел ввиду защиту максимальной мощности.Большое спасибо за ответы, буду собирать.

Здравствуйте! На плате между положительным выходом и входом Uвых блока управления стоит подстроечный резистор (на схеме его нет). Подскажите, пожалуйста, его номинал.

Он стоит для удобной настройки Uмах, я использую на 50к

В таком случае поясните в каком случае нужна защита от кз, если кз для лбп это штатный режим. Перенапряжение- это вообще что в вашем понимании? Как это вообще может относится к нормально работающему лбп. Может вы про защиту от макс мощности, так не надо в целом закладывать такие некорректные диапазоны, ну а если уж очень надо то делать правильно на токовом трансе как в этом варианте yandex.ru/efir/?stream_id=vjmaXpmLF7Ro, там я использовал другую шим, но и к этой аналогично можно прикрутить к 4 ноге. Ампервольтметр подключается отдельно, его шунт использовать не надо. Точность зависит от партии, за свои деньги нормальная. При мощности до 700-900ват на каком драйвере собирать разница не существенна.

Здравствуйте! Понравилась ваша схема, но хотелось бы ток больше, что надо изменить в цепях управления? И как реаализовать защиту от превышения тока.

Увеличить ток можно либо уменьшением сопротивления шунта, либо резистора R2.Про защиту не понял о чём вы? Кз штатный режим бп на любом установленном токе.

Здравствуйте. Добавите модуль управления 2 в sprint-layout?

Источник

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

Читать также: Духовой шкаф электрический мощность потребления

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Обновление от 28.12.2019

Блок питания очень мощный, вполне справляется с долгим сверлением. В реализации без ОС по напряжению, блок
может быть подключенным к сети хоть целые сутки — нагрева нет.

Однако в процессе эксплуатации на объекте выявился существенный недостаток: при заклинивании вала двигателя
могут перегорать силовые ключи. У меня всегда вылетал «минусовой» транзистор (нижний по схеме), а второй оставался
целым.

Так как заклинивание вала эквивалентно короткому замыканию на выходе БП, нужно принять меры, устраняющие это явление.
Посмотрим на работу аккумуляторного инструмента — за счет «мягкой» вольт-амперной характеристики (ВАХ) батареи, при
слишком больших нагрузках и заклинивании просаживается напряжение, в следствии чего уменьшается и ток.

Опытов еще не проводил, но считаю полезными меры по «смягчению» ВАХ:
1. Вторичную обмотку силового трансформатора нужно мотать «кучнее», без разнесения по всему кольцу.
2. Номинальное напряжение на выходе (под нагрузкой лампы 30 Вт, например) снизить на несколько вольт путем уменьшения числа витков
вторички. То есть если шуруповерт на 14,4 В, то подобрать напряжение на выходе БП 9-10. Вполне возможна просадка мощности вращения
после таких манипуляций, тут следует найти оптимальный вариант.

Делать защиту в «горячей» части блока считаю неактуальным, ибо при больших нагрузках защита будет часто срабатывать и потеряется
удобство в работе. Все-таки меры по «смягчению» ВАХ мне кажутся более приемлемыми.

Будет очень интересно узнать ваш опыт, если будете собирать схему и пытаться сделать «мягким» заклинивание вала. Контакты в подвале сайта.

Оцените публикацию:

  • Currently 4.24

Оценка: 4.2 (37 голосов)

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301

Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2

Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Пошаговая инструкция

Процесс изготовления импульсного БП выглядит так:

  • выполняют расчет изделия в онлайн-калькуляторе (публикуются на многих сайтах) или специальной программе. В зависимости от желаемых характеристик БП, ПО подберет параметры всех элементов: конденсаторов, транзисторов, дросселей и пр.;
  • закупают все радиодетали;
  • в пластине текстолита в соответствии со схемой и размерами элементов высверливают отверстия. Далеко не всегда удается добиться желаемых характеристик с первого раза, ввиду чего схему приходится дополнять компенсаторами и прочими элементами. Необходимо оставить для них место на плате;
  • на схеме выбирают точки входа, помеченные символами «АС», припаивают предохранитель и далее один за другим все элементы согласно схеме;
  • выполняют проверку.

Преимущества и недостатки импульсных блоков питания

Основные преимущества ИБП:

  • Малый вес и компактные размеры. Уменьшение габаритов устройств обусловлено переходом от использования тяжелых силовых трансформаторов. В ИБП нет линейных управляющих систем, которые требуют установки больших охлаждающих радиаторов. Повышение частоты обрабатываемых сигналов также позволило уменьшить размеры конденсаторов.
  • Высокий КПД. Низкочастотные трансформаторы характеризуются значительными потерями энергии в виде тепла, которое образуется в результате электромагнитных преобразований. В ИБП максимальные потери происходят в каскаде силовых ключей во время переходных процессов, а все остальное время транзисторы устойчивы. Потери энергии сведены к минимуму. КПД устройств достигает 98 %.
  • Широкий диапазон входных напряжений. Область применения устройств значительно расширена. Импульсные технологии позволяют использовать блоки питания в сетях с различными стандартами электроэнергии.
  • Встроенные системы защиты. Большинство моделей имеют автоматическую защиту от токов короткого кроткого замыкания, системы аварийного отключения нагрузок и т. д. Защитные устройства надежно встраиваются в конструкцию блоков благодаря применению миниатюрных цифровых полупроводниковых модулей.
  • Доступная стоимость. Элементная база ИБП постоянно унифицируется. Снижается стоимость на основные компоненты устройств, которые выпускаются серийно на автоматических станках. Дополнительное сокращение затрат достигается за счет использования менее мощных полупроводников.

Недостатками ИБП являются:

  • Ограничения по мощности. Существуют противопоказания, как при высоких, так и при низких нагрузках. Если в выходной цепи ток упадет ниже критического значения, то блок начинает генерировать напряжение с искаженными характеристиками, либо полностью отказывает схема запуска.
  • Наличие высокочастотных помех. Блоки вырабатывают их в любом исполнении. Высокочастотные помехи транслируются в окружающую среду, поэтому необходимо дополнительно решать вопрос об их подавлении. В некоторых видах чувствительной цифровой аппаратуры использование ИБП по этой причине невозможно.

Достоинства и недостатки

Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.

Есть и недостатки:

  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.


Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.


Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.


Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Печатная плата

Я плохой проектировщик печаток, поэтому плата у меня получилась громоздкой, двухэтажной. Если кто будет
разрабатывать свою печатную плату — буду благодарен если предоставите рисунок, контакты в подвале сайта.

Два уровня платы сделаны из двух кусков стеклотекстолита 70Х70 мм.
На первом этаже находятся фильтрующие конденсаторы, силовой трансформатор и мягкими проводами
подпаяны транзисторы. Печатка прорезана острым резаком без всякого травления. Монтаж деалей
обычный, в отверстие, рисунок со стороны медной фольги. Подпаянные транзисторы находятся на
радиаторе под платой вместе с диодной сборкой Шоттки VD3, VD4.

Платы соединены между собой медным одножильным монтажным проводом, перемычка с эмиттера VT1 лишняя, она
задумывалась для работы защиты, от которой я отказался.

Вторая плата выполнена поверхностным монтажем. У меня влезли не все выходные конденсаторы, пришлось их
добавлять в корпус батареи.

На вторую плату подается сетевое напряжение, с нее же берется выходное. С диодной сборки приходит +, на которую
в свою очеред приходят крайние выводы вторички Тр1. При уверенной работе без ОС по напряжению, цепь с С15 не
нужна, как и соответствующие этой цепи обмотки.

На плату не влезли все конденсаторы выходного конденсаторного баяна, поэтому несколько конденсаторов
пришлось расположить в клеммном углублении батарейного отсека.

Дно батарейного корпуса пришлось вырезать, так как плата не влезла полностью, к тому же для надежности был
использован радиатор. В конечном итоге у меня получился такой блок:

При грамотном проектировании и использовании подходящих компонентов, блок все-таки можно поместить в родной
корпус батареии не вылазия за его пределы. Мне это почти удалось. С другой стороны, если использовать блок
отдельно от шуруповерта, можно вообще не переживать за габариты. Однако в таком случае придется использовать
провод от преобразователя до шурика сечением не менее 2,5 мм2. На 4-х метровом проводе 1,5 мм2 мощность немного
падает.

Данное решение является интересным с точки зрения применения: никаких ШИМ-ов и сложных схем, его можно
применять для питания различных мощных приборов. Не зря ведь эту схему широко используют для питания
галогенных ламп
!

На этом мы закончим описание, позднее здесь же дам объективную оценку использования блока в реальных,
рабочих условиях стройки. Предварительная оценка по мощности вращения: 5+!

Что это такое

Упрощённо трансформаторный БП можно представить в виде схемы, состоящей из собственно трансформатора, выпрямителя, фильтра для сглаживания параметров выходного напряжения и стабилизатора. Такие устройства обладают достаточно простой схемотехникой, недорогие и обеспечивают низкий уровень помех выходного сигнала.

Но у них есть серьёзные конструктивные недостатки – большой вес и невысокий КПД. Значительная часть энергии преобразовывается в тепловую, поэтому проблема перегрева для таких устройств, особенно мощных – одна из самых актуальных.

Принцип работы импульсных БП для начинающих тоже можно объяснить довольно просто: он также основан на использовании трансформатора, однако работает он на очень больших частотах, порядка 1-100 КГц и обладает гораздо меньшими габаритами и массой. Это, в свою очередь, делает задачу отвода тепла легко выполнимой. Функция фильтрации/стабилизации выходного напряжения упрощается, поскольку для этой задачи используются конденсаторы малой ёмкости.

Но и у инверторных оков питания имеются недостатки – сложная схемотехника, чувствительность к электромагнитным помехам. Что касается стоимости, то она вполне сравнима с трансформаторными устройствами.

Стандарты и сертификаты

При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам. На блоках питания чаще всего можно встретить указание следующих стандартов:

Также есть компьютерные стандарты форм-фактора АТХ, в котором определены размеры, конструкция и многие другое параметры блока питания, включая допустимые отклонения напряжений при нагрузке. Сегодня существуют несколько версий стандарта АТХ:

  1. ATX 1.3 Standard
  2. ATX 2.0 Standard
  3. ATX 2.2 Standard
  4. ATX 2.3 Standard

Отличие версий стандартов АТХ в основном касается введения новых разъемов и новых требованиям к линиям питания блока питания.

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!. Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

Вернуться наверх к меню

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.