Схема подключения ваттметра в трехфазную сеть. измерение активной мощности в цепях трехфазного тока

Содержание

Технические параметры

В соответствии с указанными техпараметрами, приспособление крайне полезное в домашнем использовании и дает возможность оценить напряжение в электросети, ток, мощность нагрузки и расходование электричества.

Диапазоны замеров:

  • рабочее и тестируемое напряжение: 80 ~ 260VAC;
  • замеряемый ток: 0-20A;
  • рабочая частота (в электросети): 50-60 Гц;
  • замеряемая мощность: 0-4500Вт;
  • расходование электроэнергии: 0-9999 кВтч (отображается, какое количество электричества за 60 минут затрачивается подсоединенный к такому приспособление электронный прибор);
  • рабочие температурные показатели окружающего пространства: 0-50 градусов;
  • указанные габариты 8,5 на 5 на 2,5 см будут соответствовать реальным параметрам.

Важно! Кроме мощности, такое устройство способно измерять напряжение, электроток, частоту. Другие возможности ваттметров будут зависеть от компании-производителя


Параметры приспособления

Ваттметры поглощаемой мощности радиодиапазона

Ваттметры поглощаемой мощности образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Видовое деление этой подгруппы связано в основном с применением различных типов первичных преобразователей (приемных головок). В серийно выпускаемых ваттметрах используются преобразователи на базе термистора , термопары и пикового детектора ; значительно реже, в экспериментальных работах, применяются датчики, основанные на других принципах — пондемоторном, гальваномагнитном и т.д. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за неидеального согласования входного сопротивления приемных головок с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не падающую мощность, а поглощаемую, которая отличается от падающей на величину, равную K P ×P пад

, гдеK P — коэффициент отражения по мощности.

Термисторные (болометрические) ваттметры состоят из приемного преобразователя на базе термистора (или болометра) и измерительного моста с источником низкочастотного переменного тока для подогрева термистора. Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. В процессе измерения полная мощность, рассеиваемая на термисторе (при подаче на него одновременно измеряемого сигнала и тока подогрева) и, соответственно, сопротивление термистора поддерживается одинаковым с помощью измерительного моста, котоорый уравновешивается изменением тока подогрева. В первых моделях термисторных ваттметров уравновешивание осуществлялось вручную, в современных ваттметрах уравновешивание автоматическое, показания выводятся в цифровом виде. К недостаткам термисторных ваттметров относится их малый динамический диапазон — максимальная мощность рассеивания — несколько милливатт, это ограничение преодолевается использованием аттенюаторов , делящих мощность, но вносящих при этом дополнительную погрешность. ПРИМЕРЫ: М3-22А, М3-28

Калориметрические ваттметры отличаются от термисторных тем, что для поглощения измеряемой мощности используется отдельная нагрузка, от которой тепло передается на термисторный преобразователь через рабочую среду — дистиллированную воду или специальную жидкость. Жидкая среда циркулирует со строго заданной скоростью потока, омывая по очереди входную нагрузку, преобразователь и охлаждающий теплообменник. ПРИМЕРЫ: М3-13, МК3-68, МК3-70

Термоэлектрические ваттметры в качестве первичного преобразователя используют термопару (или блок термопар) прямого или косвенного нагрева. При измерении горячий спай термопары нагревается под воздействием подводимой мощности измеряемого сигнала, при этом вырабатывается термо-э.д.с. Измерительная информация в виде сигнала постоянного тока поступает на электронный блок (аналоговый или цифровой), где обрабатывается и поступает на показывающее устройство. ПРИМЕРЫ: М3-51, М3-56, М3-93

Ваттметры с пиковым детектором просты в устройстве, в отличие от других видов ваттметров способны измерять не только мощность непрерывного сигнала, но и пиковую мощность радиоимпульсов, однако, из-за низкой точности измерения в настоящее время применяются редко. По принципу действия такой ваттметр представляет собой выпрямительный вольтметр переменного тока, имеющий на входе нагрузку с сопротивлением, равным волновому сопротивлению кабеля, и с отчетным устройством, проградуированным в значениях мощности. ПРИМЕРЫ: М3-3А, М3-5А

Печатная плата

Проект печатной платы тоже выполнен в среде SoloPCB. Проектирование прибора в качестве портативного устройства было хорошей идеей, при этом контур печатной платы был спроектирован в Autocad и затем экспортирован в среду SoloPCB (Рисунок 5).

Рисунок 5. Вид проекта печатной платы цифрового ваттметра в среде SoloPCB.

Печатные проводники силовых линий (фаза, нейтраль, заземление), соединяющие входной (AC IN) и выходной (AC OUT) разъемы, сделаны широкими, насколько это возможно, все блокировочные конденсаторы расположены как можно ближе к микросхемам. Шины аналоговой (AGND) и цифровой «земли» (DGND) выполнены отдельными. Все компоненты расположены на верхнем слое.

Примечание:

При проектировании схемы и печатной платы в среде SoloPCB некоторые элементы, которые отсутствовали в библиотеках, были созданы вручную. Библиотека этих элементов входит в состав архива с проектными файлами, который вы сможете скачать в секции загрузок.

Точность и аккуратность

Существуют ограничения на измерение мощности с помощью недорогих ваттметров или даже с любыми измерителями, не предназначенными для измерений малой мощности. Это особенно влияет на низкую мощность (например, менее 10 Вт), используемую в режиме ожидания; показания могут быть настолько неточными, что будут бесполезны (хотя они подтверждают, что мощность в режиме ожидания низкая, а не высокая). Сложность в значительной степени связана с трудностью точного измерения переменного тока, а не напряжения, и относительно небольшой потребностью в измерениях малой мощности. В спецификации счетчика должна быть указана погрешность считывания для различных ситуаций. Для типичного сменного измерителя погрешность в мощности указывается как ± 5% от измеренного значения ± 10 Вт (например, измеренное значение 100 Вт может быть неверным на 5% от 100 Вт плюс 10 Вт, т. Е. ± 15 Вт, или 85–115 Вт); погрешность в кВт · ч составляет ± 5% от измеренного значения ± 0,1 кВт · ч. Если портативный компьютер в спящем режиме потребляет 5 Вт, измеритель может показывать что угодно от 0 до 15,25 Вт, без учета ошибок из-за несинусоидальной формы сигнала. На практике точность можно повысить, подключив фиксированную нагрузку, такую ​​как лампа накаливания, добавив устройство в режим ожидания и используя разницу в потребляемой мощности. Это выводит измерение из проблемной зоны с низким энергопотреблением.

Двухэлементный ваттметр — Большая Энциклопедия Нефти и Газа, статья, страница 4

Двухэлементный ваттметр

Мощность может быть измерена двумя однофазными ваттметрами или однщл трехфазным, так называемым двухэлементным ваттметром, в котором конструктивно оформлены в одном корпусе два однофазных ваттметра. На рис. 10 — 5 показана схема измерения активной мощности по способу двух ваттметров для соединения приемника звездой.  

Для измерения мощностей в цепях трехфазного тока, нагрузка которых может быть как равномерной, так и неравномерной, применяются два одноэлементных ваттметра или один двухэлементный ваттметр.  

На основании измерений и вычислений убедиться, что показание двухэлементного трехфазного ваттметра равно сумме показаний одноэлементных ваттметров и что расчетная мощность трехфазной цепи равна показанию двухэлементного ваттметра.  

В трехпроводных цепях трехфазного тока электрическая энергия измеряется двухэлементными счетчиками, например счетчиком типа САЗ-И670 ( рис. 9 — 7), схема включения которого та же, что и двухэлементного ваттметра. Две электромагнитные системы счетчика воздействуют на два алюминиевых диска, укрепленных на одной оси.  

Амперметры и токовые обмотки двухэлементного ваттметра подключаются ко вторичным обмоткам трансформатора тока ТТ, установленным в фазах А и С. Обмотки напряжения двухэлементного ваттметра и вольтметра подключаются ко вторичной цепи трансформатора напряжения ТН.  

При выпуске из производства или ремонта следует проверить влияние отдельных элементов прибора друг на друга. Для этого в двухэлементном ваттметре отключают в одном элементе токовую цепь, а в другом цепь напряжения. Ток и напряжение включенных цепей устанавливают номинальными. При поверке трехэлементных ваттметров в одном из элементов устанавливают номинальный ток и напряжение, равное нулю, а в двух других — ток, равный нулю, и номинальное напряжение. Смещение указателя с нулевой отметки шкалы при этих условиях не должно превышать предела допускаемой погрешности.  

Для измерения активной мощности в эксплуатационных условиях промышленность выпускает трехфазные одно — и двухэлементные ваттметры, соответственно рассмотренным методам. В трехпроводных цепях наиболее широко распространен двухэлементный ваттметр. Он состоит из двух катушек, укрепленных на одной оси подвижной системы, и двух неподвижных катушек. Отклонение подвижной части ваттметра определяется алгебраической суммой моментов, действующих на подвижную часть.  

Результат измерения не зависит от схемы соединения резисторов нагрузочного устройства. По этой же схеме включается и двухэлементный ваттметр.  

Если стрелка одного из ваттметров стремится переместиться влево от нуля, то необходимо изменить направления тока в какой-либо из катушек прибора и определить мощность установки как разность показаний обоих ваттметров. Так как пользование двумя ваттметрами неудобно, то для измерения мощности трехфазной системы применяют один двухэлементный ваттметр.  

Если стрелка одного из ваттметров стремится переместиться влево от нуля, то необходимо изменить направление тока в катушке напряжения этого прибора и определить мощность установки как разность показаний обоих ваттметров. Так как пользование двумя ваттметрами неудобно, то для измерения мощности трехфазной системы часто применяют один двухэлементный ваттметр. Как показывает само название, этот ваттметр состоит из двух однофазных ваттметров ( элементов), включаемых по схеме ( см. рис. 106) и воздействующих на общую подвижную часть. Этот прибор производит автоматическое сложение или вычитание мощностей, измеряемых его отдельными элементами.  

В сеть трехфазного тока с линейным напряжением 120 ft включена треугольником осветительная нагрузка. Сопротивления фаз равны: первой — 12 ом, второй — б ом, третьей-8 ом. Для измерения потребляемой мощности включен трехфазный двухэлементный ваттметр.  

Измерение активной мощности в трехфазной сети с нейтральным проводом производится по схеме рис. 2.47 а. Каждый ваттметр измеряет мощность в отдельной фазе; общая мощность равна сумме показаний ваттметров: P06in Pwi Pw2 Pw3 — В трехфазной сети с равномерной нагрузкой каждой фазы можно измерить мощность одной фазы и, умножив ее на три, получить общую мощность. Токовые катушки могут быть включены в два произвольных провода сети. На этом принципе основано измерение активной мощности двухэлементным ваттметром ( с двумя подвижными и двумя неподвижными катушками) в трехфазной трехпроводной сети.  

Страницы:      1    2    3    4

Электронные счетчики

Данный прибор берет такие данные, как сила тока и напряжение непосредственно из самой сети. Далее счетчик преобразует мощность в частоту следования импульсов. Все полученные данные автоматически выводятся на экран устройства.

Плюсом таких приборов является их компактность и малый уровень погрешности.

В зависимости от комплектации и ценовой категории такой прибор может иметь еще массу полезных функций: например, возможность дистанционного снятия показаний или автоматический подсчет тарификации.

Несмотря на свои очевидные плюсы, такие приборы все еще проигрывают в популярности своим механическим аналогам. Цена автоматического счетчика электроэнергии является достаточно высокой по сравнению с простым механическим прибором.

Также они имеют гораздо меньший срок службы, особенно часто случаются поломки, если у вас наблюдается нестабильность напряжения в сети.

Подключение амперметра к и54

Также может встретиться трансформатор тока И54. У него также есть измерительные колки (и1, и2), к которым подключается амперметр напрямую для измерения вторичного тока. Отверстие, куда можно продевать кабель отсутствует. И есть колки первичного тока (л1, л2). Вся магия данного тт состоит в колках, которые расположены в верхней части прибора.

В принципе, на корпусе расположена схема, взглянув на которую можно обо всем догадаться, при условии наличия опыта. Плюс, всегда перед работой с прибором необходимо прочитать документацию на него.

Верхний колок используется при транспортировке и на выключенном приборе. В центральном положении он замыкает первичную обмотку. Левое и правое отверстия нужны для установки в них колка во время работы, чтобы не потерять его вероятно. Доставая колок из центрального отверстия мы размыкаем верхнюю цепочку первичной обмотки тт.

Схемы включения амперметра и вольтметра.

44. Направление тока и направление линий его магнитного поля -. Направление тока в проводнике На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.

Рис.

4.3. Измерительный трансформатор напряжения.

Схема включения вольтметра:

?/,, U2_

первичное и вторичное напряжения ТН;Wv W2 — первичная и вторичная обмотки ТН;V — вольтметр

Рис. 4.4.

Измерительный трансформатор тока. Схема включения амперметра:

/р /2 — первичный и вторичный токи ТТ; Wv W2

— первичная и вторичная обмотки ТТ;А — амперметр

Для измерения тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через них проходит весь ток, протекающий в цепи (рис. 4.4)

Важно, чтобы при различных электрических измерениях амперметр как можно меньше влиял на электрический режим цепи, в которую он включен. Поэтому амперметр должен иметь малое собственное сопротивление по сравнению с сопротивлением цепи

Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть

По той же причине нельзя включать амперметр параллельно нагрузке

Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.

Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.

Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.

Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Рис. 4.5.

Схема включения амперметра:

а —

с шунтом;6 — через трансформатор тока; для схемыа: 1 — шунт;2 — нагрузка;

для схемы б: 1

— измерительный трансформатор тока;2 — нагрузка

Рис.

4.6. Схема соединения трех амперметров через два трансформатора тока:

Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л

— амперметры;iA, iB, ic — токи в фазах

Рис. 4.7.

Схема включения вольтметра:

R

— сопротивление цепи;V— вольтметр

На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.

Как видно из схемы, через первый амперметр проходит ток iA,

через второй —iB, следовательно, ток в третьем амперметре, равный сумме двух линейных токовiA иiB, равен третьему линейному току:ic= iA +iB. Для измерения напряжения на участке цепи применяют вольтметры. Вольтметр включают параллельно тем точкам цепи (М, N),

напряжение между которыми надо измерить (рис. 4.7).

Вольтметр не должен изменять напряжение на измеряемом участке цепи, по этой причине ток, проходящий через вольтметр, должен быть много меньше, чем ток на измеряемом участке.

Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Любой вольтметр рассчитан на определенное предельное напряжение, но с помощью подключения последовательно с вольтметром добавочного сопротивления /?доб можно измерять большие напряжения (рис. 4.8, б).

Рис. 4.8.

Схемы включения амперметра и вольтметра в электрическую цепь:

а

— без расширения пределов измерения;б — с расширением пределов измерения;

Яш

— сопротивление шунта; /?доб — добавочное сопротивление

На рисунке 4.9 приведена схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения.

Рис. 4.9.

Схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения:V— вольтметр; А — амперметр;W— ваттметр

На рисунке 4.10 приведена схема включения амперметров и вольтметров в трехфазную цепь. Как видно из схемы, амперметры включены через измерительные ТТ, а вольтметры —через измерительные ТН. Такие схемы включения измерительных приборов характерны для высоковольтных сетей напряжением 6 (10) кВ и выше.

Рис. 4.10.

Включение амперметров и вольтметров в трехфазную цепь с помощью измерительных трансформаторов тока и напряжения

Печатная плата

Проект печатной платы тоже выполнен в среде SoloPCB. Проектирование прибора в качестве портативного устройства было хорошей идеей, при этом контур печатной платы был спроектирован в Autocad и затем экспортирован в среду SoloPCB (Рисунок 5).

Рисунок 5. Вид проекта печатной платы цифрового ваттметра в среде SoloPCB.

Печатные проводники силовых линий (фаза, нейтраль, заземление), соединяющие входной (AC IN) и выходной (AC OUT) разъемы, сделаны широкими, насколько это возможно, все блокировочные конденсаторы расположены как можно ближе к микросхемам. Шины аналоговой (AGND) и цифровой «земли» (DGND) выполнены отдельными. Все компоненты расположены на верхнем слое.

Примечание:

При проектировании схемы и печатной платы в среде SoloPCB некоторые элементы, которые отсутствовали в библиотеках, были созданы вручную. Библиотека этих элементов входит в состав архива с проектными файлами, который вы сможете скачать в секции загрузок.

Исходный код программы (скетча)

Arduino

/*
* Wattmeter for Solar PV using Arduino
* Dated: 27-7-2018
* Website: http://www.circuitdigest.com/
*
* Power LCD and circuitry from the +5V pin of Arduino whcih is powered via 7805
* LCD RS -> pin 2
* LCD EN -> pin 3
* LCD D4 -> pin 8
* LCD D5 -> pin 9
* LCD D6 -> pin 10
* LCD D7 -> pin 11
* Potetnital divider to measure voltage -> A3
* Op-Amp output to measure current -> A4
*/

#include <LiquidCrystal.h> //подключаем библиотеку для работы с ЖК дисплеем
int Read_Voltage = A3;
int Read_Current = A4;
const int rs = 3, en = 4, d4 = 8, d5 = 9, d6 = 10, d7 = 11; //номера контактов, к которым подключен ЖК дисплей
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
void setup() {
lcd.begin(16, 2); //Initialise 16*2 LCD
lcd.print(» Arduino Wattmeter»); //приветственное сообщение на 1-й строке
lcd.setCursor(0, 1);
lcd.print(» With Arduino «); // приветственное сообщение на 2-й строке
delay(2000);
lcd.clear();
}
void loop() {

float Voltage_Value = analogRead(Read_Voltage);
float Current_Value = analogRead(Read_Current);
Voltage_Value = Voltage_Value * (5.0/1023.0) * 6.46;
Current_Value = Current_Value * (5.0/1023.0) * 0.239;
lcd.setCursor(0, 0);
lcd.print(«V=»); lcd.print(Voltage_Value);
lcd.print(» «);
lcd.print(«I=»);lcd.print(Current_Value);
float Power_Value = Voltage_Value * Current_Value;
lcd.setCursor(0, 1);
lcd.print(«Power=»); lcd.print(Power_Value);

delay(200);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

/*
* Wattmeter for Solar PV using Arduino
* Dated: 27-7-2018
* Website: http://www.circuitdigest.com/
*
* Power LCD and circuitry from the +5V pin of Arduino whcih is powered via 7805
* LCD RS -> pin 2
* LCD EN -> pin 3
* LCD D4 -> pin 8
* LCD D5 -> pin 9
* LCD D6 -> pin 10
* LCD D7 -> pin 11
* Potetnital divider to measure voltage -> A3
* Op-Amp output to measure current -> A4
*/

#include <LiquidCrystal.h>  //подключаем библиотеку для работы с ЖК дисплеем

intRead_Voltage=A3;

intRead_Current=A4;

constintrs=3,en=4,d4=8,d5=9,d6=10,d7=11;//номера контактов, к которым подключен ЖК дисплей

LiquidCrystallcd(rs,en,d4,d5,d6,d7);

voidsetup(){

lcd.begin(16,2);//Initialise 16*2 LCD

lcd.print(» Arduino Wattmeter»);//приветственное сообщение на 1-й строке

lcd.setCursor(,1);

lcd.print(»  With Arduino  «);// приветственное сообщение на 2-й строке

delay(2000);

lcd.clear();

}

voidloop(){

floatVoltage_Value=analogRead(Read_Voltage);

floatCurrent_Value=analogRead(Read_Current);

Voltage_Value=Voltage_Value*(5.01023.0)*6.46;

Current_Value=Current_Value*(5.01023.0)*0.239;

lcd.setCursor(,);

lcd.print(«V=»);lcd.print(Voltage_Value);

lcd.print(»  «);

lcd.print(«I=»);lcd.print(Current_Value);

floatPower_Value=Voltage_Value*Current_Value;

lcd.setCursor(,1);

lcd.print(«Power=»);lcd.print(Power_Value);

delay(200);

}

Классификация ваттметров

В общем виде, ваттметры можно разделить на аналоговые и цифровые. Оба класса могут ориентироваться на постоянный, или переменный ток, быть универсальными, обладать различной точностью и нишей использования. Существуют одно- и трехфазные измерительные приборы.

Большинство цифровых и аналоговых измерителей фиксируют «мгновенные» значения характеристики, что может быть удобно с одной стороны для контроля, но не дает обзора ситуации в целом — на общее потребление линии по времени.

Электродинамические аналоговые приборы

Основа электродинамического ваттметра — две катушки, одна из которых имеет фиксированное положение, вторая подвижна и закреплена на оси индикаторной стрелки. Обе имеет разное количество витков и подключение к линии. Первая монтируется к исследуемой цепи последовательно, вторая — параллельно через резистор. Принцип работы механизма устройства заключен в том, что чем сильнее ток течет в фиксированной катушке, тем мощнее магнитные поля между ней и подвижной, а значит больше отклоняется стрелка, указывающая на текущее значение характеристики.

Схема включения ваттметра подобного класса подразумевает нахождение его последовательно с линией нагрузки потребителя. Главный минус большинства аналоговых устройств — без сильного усложнения конструкции, невозможно получать раздельную информацию по активной, реактивной и полной мощности.

Цифровые измерительные аппараты

Принцип действия цифрового измерительного прибора всегда одинаков — внутренняя микро-ЭВМ (микроконтроллер) обрабатывает сигнал от аналогового датчика исследуемой линии и выводит результат на экран или числовой индикатор. Схема подключения ваттметра подобного класса похожа на используемую у аналоговых — параллельно нагрузке. Основной плюс цифровых измерителей в их универсальности и широте возможностей. К примеру, для раздельного вычисления реактивной, активной и полной мощности, не нужно использовать сложные аппаратные конструкции — достаточно предусмотреть несколько дополнительных сенсоров. Не редкость объединение разноплановых измерительных устройств в одном корпусе — амперметра, вольтметра, анализатора «мгновенного» расхода и его значений по периоду времени.