Принцип работы и особенности светодиодной лампы

Содержание

Отличительные характеристики преобразователя

Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.

Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.

К главным факторам, влияющим на работу, относятся:

  • составляющие элементы, используемые в процессе сборки;
  • степень защиты (IP);
  • минимальные и максимальные значения на входе и выходе;
  • производитель.

Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).

В процессе работы блока питания для регулирования величины выходящего напряжения внедрен метод широтно-импульсной модуляции, при этом на выходе сохраняется аналогичный род тока, что и на входе

Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.

Классическая схема драйвера

Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

Схема преобразователя на 220 В представлена в качестве импульсного блока питания. При сборке необходимо соблюдать все правила электробезопасности, т. к. здесь нет пределов по токоотдаче

Схема такого механизма составлена из трех основных каскадных областей:

  1. Разделитель напряжения на емкостном сопротивлении.
  2. Выпрямитель.
  3. Стабилизаторы напряжения.

Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

Номинальное значение резистора может находиться в диапазоне 100 кОм-1 Мом, с мощностью 0,5-1 Вт. Конденсатор должен быть электролитическим, а его эффективное амплитудное значение напряжения – 400-500 В

Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

Процесс выпрямления на этом участке выполняется по схеме Гретца. Диодный мост подбирается, отталкиваясь от номинального тока и обратного напряжения. При этом последнее значение не должно быть меньше 600 В

Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

Так как питание светодиодов не должно превышать 12 В, для схемы необходимо использовать стабилизирующий элемент. Для этого вводится емкостный фильтр. Например, можно применять модель L7812

Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

Проблемы самостоятельного изготовления

Главными вопросами, которые приходится решать при изготовлении LED-ламп, является перевод переменного электрического тока в пульсирующий и его выравнивание до постоянного. Помимо этого, предстоит ограничить силу электропотока 12 вольтами, что необходимо для питания диода.

Для самостоятельного создания светильника на светодиодах можно воспользоваться деталями, купленными в специализированных магазинах, или элементами из перегоревших приборов

Продумывая устройство, следует также решить ряд конструктивных задач, а именно:

  • как расположить схему и светодиоды;
  • как изолировать систему;
  • как обеспечить теплообмен в устройстве.

Перед сборкой желательно продумать все эти проблемы с учетом требований, которые предъявляются к самодельному источнику света.

Как устроена светодиодная лампа?

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут самостоятельно собрать лампу на светодиодах, но новичку это не по силам.


Учитывая, что приборы со светодиодами стали основой систем освещения современных квартир, умение разбираться в устройстве ламп и ремонтировать их может сохранить весомую часть семейного бюджета

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, по этой ссылке.

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.


Вместо стеклянной колбы – матовый рассеиватель, нить накала заменили «долгоиграющие» диоды на плате, лишнее тепло отводит радиатор, а стабильность напряжения обеспечивает драйвер

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – цоколь. Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Разновидности

Свечевидная форма или так называемая «кукуруза» подходит для большинства декоративных разновидностей приборов. Особенно удачными называют варианты с патронами, направленными вверх. Шарообразные, грушевидные изделия неплохо сочетаются с плафонами. Акцентное освещение помогают создать так называемые рефлекторы.

Для светодиодных ламп распространены следующие виды цоколей:

  1. E40 в случае с крупными изделиями повышенной мощности. Этот вариант актуален при организации уличного освещения.
  2. E41. Его ещё называют «миньоном». Для маломощных ламп.
  3. E27. С таким цоколем сталкивался каждый.

Есть и штырьковые модели:

  • G13 – вариант похож на линейные люминесцентные лампы. Есть поворотная разновидность.
  • GX53. Встраиваемые и накладные типы светильников с плоской широкой формой.
  • GU10. С расстоянием между контактами в 10 мм. На кончиках штырьков отличается увеличенным диаметром.
  • GU5.3. Оснащают ими популярные лампы с обозначением MR16.
  • G4 – для ламп с миниатюрными размерами.

Материалы для изготовления самоделки

Помимо корпуса, для создания лампы потребуются и другие элементы. Это, прежде всего светодиоды, которые можно приобрести в виде LED-лент или отдельных элементов НК6. Сила тока каждой детали равна 100-120 мА; напряжение 3-3,3 V.

Сборка некоторых схем предполагает использование дополнительных звеньев, например, драйвера, поэтому набор компонентов для каждого конкретного случая рассматривается отдельно

Необходимы также выпрямительные диоды 1N4007 либо диодный мост, а также предохранители, обнаружить которые можно в цоколе старого прибора.

Понадобится и конденсатор, емкость и напряжение которого должны соответствовать используемой электросхеме и количеству использованных в ней LED-элементов.

Если не используется готовая плата, нужно подумать о каркасе, к которому крепятся светодиоды. Для его изготовления подойдет теплоустойчивый материал, не являющийся металлом и непроводящий электрический ток.

Как правило, подобную деталь выполняют из прочных пластиков или плотного картона. Для крепления светодиодных элементов к каркасу понадобятся жидкие гвозди или суперклей.

Как установить споты своими руками

Лэд-споты являются одним из лучших вариантов при выборе элементов основной системы освещения для жилого помещения. Их главные преимущества – простота монтажа, хорошее сочетание с интерьером, идеальная подсветка, экономия электроэнергии. Рассмотрим, как установить светодиодный светильник такого типа своими руками в гипсокартоновую основу.

Монтаж светодиодных светильников рассматриваемой модели осуществляется в несколько этапов:

  1. Подготовительный.
  2. Основной.
  3. Контрольный.

На первом этапе выполняются следующие процедуры:

  1. Рассчитывается необходимое количество светильников, проводки, драйверов и прочего оборудования.
  2. Разрабатывается электросхема.
  3. Выполняется разметка установки компонентов освещения и крепежных переходников для навесного потолка на основании.
  4. Монтируются провода с соблюдением электромонтажных требований и элементы для спотов.

Основная стадия монтажа светодиодных светильников подразумевает такие действия:

  1. Устанавливается каркас для гипсокартонных листов.
  2. В соответствии с разметкой в них с помощью специальной коронки и дрели высверливаются подходящего под светодиодные светильники диаметра отверстия.
  3. Закрепляется гипсокартон.
  4. Выводятся провода и соединяются с контактами лед-фонарей.
  5. Далее приборы освещения вставляются в полости и крепятся соответственно конструкции (на защелки или крепежные элементы).

Когда все элементы схемы собраны, необходимо удостовериться в ее правильности, затем включить питание сети и проверить исправность приборов освещения.

Определение полярности альтернативными методами

Если случилось так, что мультиметра под рукой нет, а полярность необходимо найти, можно использовать альтернативные и «народные» средства.

К примеру, заряды проводки динамиков проверяются при помощи батарейки на 3 вольта. Для этого необходимо на короткий промежуток времени прикоснуться проводами, присоединенными к батарейке, к выводам динамика. Если диффузор в динамике начинает двигаться наружу, это будет значить, что положительная клемма динамика присоединена к плюсу батарейки, а отрицательная к минусу. Если же диффузор движется внутрь – полярность перепутана: положительная клемма замкнута на минусе, а отрицательная на плюсе.

Если необходимо подключить блок питания постоянного напряжения или аккумулятор, но на них нет маркировки полярности, а под рукой нет мультиметра, плюс и минус можно определить «народными» методами при помощи подручных материалов.

Самый простой способ определения полярности, которым можно воспользоваться дома – это использовать картофель. Для этого необходимо взять один клубень сырого картофеля и разрезать пополам. После этого два провода (желательно разного цвета или с любым другим отличительным знаком) оголенными концами втыкаются в срез картофеля на расстоянии 1-2 сантиметра друг от друга.

Другие концы проводов подключаются к проверяемому источнику постоянно тока, и прибор включается в сеть (если это аккумулятор, то после подсоединения проводов больше ничего делать не нужно) на 15-20 минут. По истечении этого времени на срезе картофеля, вокруг одного из проводов образуется светло-зеленое пятно, которое будет признаком плюсового заряда провода.

Второй способ также не требует, каких либо, особых устройств или инструментов. Для определения полярности проводов источника постоянного тока понадобится емкость с теплой водой, в которую опускаются два подключенных к источнику питания провода. После включения прибора в сеть вокруг одного из проводов начнут появляться пузыри газа (водород) – это процесс электролиза воды. Эти пузырьки образуются вокруг источника отрицательного заряда.

Следующий способ подойдет в том случае, если есть не используемый, рабочий компьютерный кулер. Способ определения полярности данным методом заключается в том, что кулер необходимо запитать от проверяемого источника бесперебойного питания. Но зачастую в кулерах присутствует три провода:

  • черный, отвечает за отрицательный заряд;
  • красный, отвечает за положительный заряд;
  • желтый, является датчиком оборотов.

В данном случае желтый провод игнорируется и никуда не подключается. Если после подключения кулера к источнику постоянного напряжения, кулер начал работать, то полярность определена правильно, плюс подключен к красному проводу, а минус – к черному. А если кулер не срабатывает – это будет означать что полярность неправильная.

Для этого необходимо дотронутся индикатором до одного из выводов аккумулятора, прижать палец к обратной стороне индикатора (к контакту на рукоятке), а ко второму выводу аккумулятора дотронуться рукой.

Если индикатор начал светиться, то заряд проверенного вывода, с которым он контактирует, имеет положительное значение, а если индикатор не засветился – вывод отрицательный. Но у этого способа определения полярности есть один недостаток. Если аккумулятор разрядился или поврежден (пробит), индикатор будет загораться при контакте с обеими клеммами, из-за чего определить значения полюсов аккумуляторной батареи будет невозможно.

Один из важных этапов сборки компьютера предполагает подключение проводов к материнской плате. Учитывая, что разных соединений там достаточно, следует разъяснить некоторые моменты. И хотя и блоков питания стараются делать все разъемы интуитивно понятными для пользователя, иногда возникают проблемы.

Начнем, пожалуй, с преимуществ

По сути их всего лишь два. Первое: это действительно уменьшенное энергопотребление, приблизительно в десять раз меньше в сравнении с лампой накаливания. Во вторых — длительность их службы (по словам производителей). Светодиодная лампа выдерживает около ста тысяч часов работы, это почти одиннадцать полных лет непрерывного свечения, что, согласитесь, привлекательно для экономии. Как бонус можно назвать их безвредность и простую утилизацию в связи с отсутствием ртути в составе, но все это относительно, и еще неизвестно есть ли в составе какие-либо другие вредные вещества, о которых не упоминается производителями.

Выбор пасты для пайки

Качество любого флюса выражается в том, что при пайке он не выгорает, только едва испаряется, а продукты его разложения легко удаляются растворителем. Лучший флюс – специальные пасты. Мы выбрали топовые наименования, исходя из опыта знакомых мастеров:

  • Interflux 2005 и 8300
  • Kingbo RMA-218
  • Amtech RMA-223
  • Флюс-гель Rexant BGA и SMD

На всякий случай держите в уме старые, «дедовские» способы найти флюс и в глухой деревне. Это таблетка аспирина, фруктовый сок, оливковое масло, нашатырь с глицерином, канифоль со спиртом. Наиболее очевидный для сельской местности – смола сосны или ели. Нужно растопить смолу на слабом огне, а потом разлить по спичечным коробкам.

Устройство светодиодной лампочки на 220 В

Самостоятельный ремонт светодиодной лампочки возможен, только если вы представляете себе из каких деталей она состоит и как все это работает. Это позволит самому искать неисправности. Устройство LED лампочки не слишком сложное. Если смотреть снаружи, можно выделить три части:

  • пластиковый или стеклянный светорассеиватель,
  • металлический, пластиковый или керамический радиатор для отвода тепла,
  • цоколь одного из стандартов.

Чтобы отремонтировать светодиодную лампочку своими руками, надо будет добраться до внутренностей — все проблемы сконцентрированы тут.

Из каких частей состоит светодиодная лампа

Если разобрать LED лампу, внутри обнаружим электрическую часть, где и будем искать повреждения. Это:

  • Преобразователь/стабилизатор напряжения или драйвер. Находится наполовину в цоколе, наполовину в радиаторе теплоотвода.
  • Плата со светодиодами.

Как видите, не слишком сложно, хотя вариаций море. Например, в некоторых моделях драйвер распаян на той же плате, где крепятся светодиоды. Это «эконом» решение и встречается обычно в дешевых лампочках. В других светодиод один. Это, наоборот, дорогие модели, так как один большой и мощный светодиод стоит значительно больше, чем куча маленьких с той же (или большей) мощностью свечения.

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;) Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Онлайн калькулятор для расчета номинала и мощности токоограничивающего резистора
Напряжение источника питания U, В:
Напряжение падения на одном LED, В:
Кол-во последовательно включенных LED, шт:
Максимально допустимый ток через LED, мА:

Ведущие производители LED-ламп

Производители LED-продукции с мировым именем ценят свой имидж, потому стремятся выпускать светильники с параметрами, которые полностью соответствуют заявленным.

Лучшими изготовителями премиальных светодиодных ламп являются:

  • Philips;
  • Osram;
  • Eurolamp;
  • Gauss.

Цены на продукцию перечисленных компаний самые высокие, но и качество светильников великолепное.

Разница в стоимости одинаковых по мощности ламп лучших брендов и дешевых производителей составляет всего 30-70%, поэтому покупать рекомендуется более надежные модели

Средний ценовой сегмент в производстве LED-ламп занимают следующие фирмы:

  • Feron;
  • Camelion;
  • Jazzway;
  • Estares;
  • Эра;
  • Navigator;
  • Ecola;
  • Оптоган.

Эти компании стремятся использовать в производстве недорогие компоненты без сильного ущерба качеству. Часто их лампы ломаются в первые дни эксплуатации, но без проблем заменяются по гарантии.

Покупать LED-продукцию малоизвестных китайских и отечественных брендов не рекомендуется, потому что их гарантийный срок редко превышает 4-6 месяцев. Кроме того, им не важен имидж бренда, а значит, есть возможность беспрепятственно использовать при производстве второсортные комплектующие.

Особенности питания светодиодных светильников

Срок службы светодиодов зависит от качества кристалла, значения рабочего тока, условия эксплуатации. Обычно они работают от тока, максимальное значение которого не превышает 2 А. Однако установленные характеристики требуют оптимальное значение в 0,35 А. Стремление иметь предельный световой поток приводит к увеличению тока. Из-за этого возникает риск перегрева кристалла. Поэтому для светодиодных светильников не рекомендуется использовать в качестве источника питания обычную электросеть без адаптера.

Какие проблемы появляются при подключении прибора к сети напрямую:

  • Светодиод будет иметь плавающую рабочую точку, из-за отрицательной зависимости снижения напряжения от температуры кристалла.
  • Чтобы выровнять ток, понадобится, по меньшей мере, добавить в схемы питания светодиодов дополнительный резистор. Помимо стабилизации тока, он будет рассеивать мощность.
  • Ко всему прочему свою лепту внесет нестабильность выходных данных источника.

Всё это приведет к существенному сокращению эксплуатационного срока, особенно при работе на предельных значениях тока.

Жизнь первая

История этой светодиодной лампы Gauss началась на заводе в далекой стране, жители которой называют её Срединным Государством (или проще — пуп земли). В общем была обычная лампа на 12 Вт 220 вольт, которая после долгих странствий на кораблях и грузовиках попала ко мне в дом. Несколько лет она освещала рабочий стол, или даже можно сказать «освящала творческое место», пока при очередном включении окончательно не погасла.

Можно конечно выкинуть и купить новую, но учитывая цену в 10 раз выше чем у ламп накаливания, есть смысл попробовать её реанимировать. К тому же интересно посмотреть что там внутри…

Краткий обзор и тестирование популярных LED-ламп

Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.

Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.

Галерея изображений

Фото из

Драйвер разобранной лампы BBK P653F

Компактная лампа Ecola 7w

Разборный аналог Ecola GU5.3

Jazzway 7.5w GU10 – подходит для ремонта

Если существует опыт работы с контроллерами, можно заменить элементы схемы, перепаять ее, слегка усовершенствовать.

Однако скрупулезная работа и усилия по поиску элементов не всегда оправданы – легче купить новый осветительный прибор.

Вариант #1 – LED-лампа BBK P653F

У марки BBK существует две очень похожие модификации: лампа P653F отличается от модели P654F лишь конструкцией излучающего узла. Соответственно, и схема драйвера, и конструкция прибора в целом у второй модели построена по принципам устройства первой.


Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

В конструкции легко обнаружить недостатки. Например, место установки контроллера: частично в радиаторе, при отсутствии изоляции, частично в цоколе. Сборка на микросхеме SM7525 выдает на выходе 49,3 В.

Вариант #2 – LED-лампа Ecola 7w

Радиатор выполнен из алюминия, цоколь – из термостойкого полимера серого цвета. На печатной плате толщиной в полмиллиметра закреплены 14 диодов, подключенных последовательно.

Между радиатором и платой – слой теплопроводящей пасты. Цоколь зафиксирован саморезами.


Схема контроллера простая, реализована на компактной плате. Светодиоды нагревают плату-основание до +55 ºС. Пульсаций практически нет, радиопомехи также исключены

Плата полностью помещена внутрь цоколя и присоединена укороченными проводами. Возникновение коротких замыканий невозможно, так как вокруг находится пластмасса – изоляционный материал. Результат на выходе контроллера – 81 В.

Вариант #3 – разборная лампа Ecola 6w GU5,3

Благодаря разборной конструкции можно самостоятельно производить ремонт или совершенствовать драйвер устройства.

Однако портит впечатление неприглядный внешний вид и конструкция прибора. Габаритный радиатор утяжеляет вес, поэтому при креплении лампы к патрону рекомендуется дополнительная фиксация.


Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

Недостатком схемы является наличие заметных пульсаций светового потока и высокая степень радиопомех, что обязательно скажется на сроке эксплуатации. Основа контроллера – микросхема BP3122, показатель на выходе – 9,6 В.

Больше информации о светодиодных лампочках марки Ecola мы рассмотрели в другой нашей статье.

Вариант #4 – лампа Jazzway 7,5w GU10

Внешние элементы лампы отсоединяются легко, поэтому до контроллера можно добраться достаточно быстро, открутив две пары саморезов. Защитное стекло держится на защелках. На плате зафиксированы 17 диодов с последовательной связью.

Однако сам контроллер, находящийся в цоколе, щедро залит компаундом, а провода запрессованы в клеммах. Чтобы их освободить, нужно воспользоваться сверлом или применить распайку.


Недостаток схемы в том, что функцию ограничителя тока выполняет обычный конденсатор. При включении лампы возникают броски тока, результатом чего является или перегорание светодиодов, или выход из строя светодиодного моста

Радиопомех не наблюдается – и все благодаря отсутствию импульсного контроллера, но на частоте 100 Гц наблюдаются ощутимые пульсации света, доходящие до 80% от максимального показателя.

Результат работы контроллера – 100 В на выходе, но по общей оценке лампа относится скорее к слабым приборам. Стоимость ее явно завышена и приравнена к стоимости марок, которые отличаются стабильным качеством продукции.

Другие особенности и характеристики ламп этого производителя мы привели в следующей статье.

Последовательное подключение светодиодов

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

  1. Недостатки последовательного подключения:
  2. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
  3. Для питания большого количества led нужен источник с высоким напряжением.