Регулируемый стабилизатор тока на lm317 для светодиодов

Содержание

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Основные характеристики, топология микросхемы

Как проверить lm мультиметром?

На входе стабилизатора при этом должно быть минимум 15В!

Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше. На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. Отличная защита интегрального стабилизатора от возможного перегрева.

Однако если ток не перестанет расти, то лампа может сгореть. Заранее благодарен Вам за ответ.

Рекомендуем: Защита кабеля в траншее кирпичом пуэ

Стабилизатор тока для светодиодов — описание

Затем подключают в схему со светодиодом. Но уже при напряжении между выходом и контактом Adj менее 1,25 В сработает схема защиты от КЗ. Но опять, же повторюсь, данный способ стабилизации годится только для маломощных светодиодов. В LM реализован ущербный принцип регулирования выходного напряжения,- по цепи Положительной обратной связи.

Это позволит досконально изучить процесс функционирования и впоследствии создать более усложненную конструкцию. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. Но это — нереальная ситуация. Каждый любитель современных электронных приборов должен научиться самостоятельно собирать преобразователи. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM и явно ограничивает варианты ее использования.

Мощность рассеяния и входное напряжение стабилизатора LM317

Характеристики Стабилизатор напряжения lm, основанный на работе микросхемы данной модификации, имеет такие характеристики: Изделие дает возможность самостоятельно настраивать уровень выходного напряжения в пределах 1,В

Рабочий блок питания Очень важно, чтобы области спаивания имели литую форму

А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию. Регулируемый Adj — это вывод, который позволяет регулировать выходное напряжение через подстрочный резистор. Стабилизатор тока для светодиодов — описание Конечно же, самым простым способ ограничить Iпотр. На выход стабилизатора нужно прицепить резисторы нужной мощности и номинала , настроить выходные напряжения и лишь после этого подключать питаемую схему.
Блок питания на LM338T part 1

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Тогда следующий вопрос. где и в каких приборах можно найти — LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

или чем можно ЛМ317 заменить?

проще — купить ) а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

Тогда следующий вопрос. где и в каких приборах можно найти — LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

или чем можно ЛМ317 заменить?

проще — купить ) а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас  из готовых блоков можно собрать любое устройство за минимальное время.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Метка: LM317T

Предлагаемый несложный стабилизатор с регулируемым в широких пределах выходным напряжением и токовой защитой может быть использован как в одноканальных, так и в многока­нальных лабораторных источниках питания.

Выходное напряжение стабилизатора можно регулировать от 3 до 27 В, Наибольший ток нагрузки — 3А. Его прототипом послужил стабилизатор, описанный в статье А.

Уварова “Лабо­раторный источник питания” (“Радио­конструктор”, 2001, …

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/35226

В радиолюбительской практике в быту и на работе иногда возникает необходимость в резервировании питания различных устройств.

Речь не идет об источниках бесперебойного питания (НРБ), а об аварийном освещении, устройствах охранной сигнализации, любительских метеостанциях, рекламных щитах, радиолюбительских репитерах, туристических палатках, т.е.

в устройствах и системах, где в качестве резервного или основного питания применяется аккумулятор без преобразования …

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/23888

Здесь представлена схема регулируемого источника питания 1.2 – 36В, 5А (Рис.1). Рис.1. Принципиальная схема Основные элементы – транзистор Дарлингтона TIP147 PNP (Рис.2 ) и линейный регулируемый стабилизатор положительного напряжения LM317 (Характеристики LM317 представлены в таблице 1). Рис.2. Цоколевка транзистор Дарлингтона TIP147

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/12584

Для управления напряжением используется потенциометр, который подключается к соответствующему разъему на плате. Напряжения поступает на диодный мост выпрямителя (напр.

4 шт 1N4007), конденсатор (1000 мкФ) и так далее, достаточно только подключить выход трансформатора источника переменного тока

Важно, входное напряжение не должно …. Читать далее

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/10314

Один из важных узлов радиоэлектронной аппаратуры – стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах.

Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация …

Читать далее

Предельно допустимые значения

Параметр Обозн. Величина Ед. изм.
Диапазон регулирования VВХ−VВЫХ −0.3…40 V
Мощность рассеяния PD Внутр.огранич. W
Корпус 221A
TA = +25°C
Тепловое сопротивление θJA 65 °C/W
кристалл-воздух
Тепловое сопротивление θJC 5 °C/W
кристалл-корпус
Корпус 936 (D2PAK−3) PD Внутр.огранич. W
TA = +25°C
Тепловое сопротивление θJA 70 °C/W
кристалл-воздух
Тепловое сопротивление θJC 5 °C/W
кристалл-корпус
Диапазон рабочих температур TJ − 55…+150 °C
Диапазон температур хранения Tstg − 65…+150 °C

Примечания:

  1. Превышение предельно допустимых значений, указанных в таблице, может привести к необратимым повреждениям микросхемы.
  2. Рекомендуемые условия работы не должны превышать работу устройства с предельно допустимыми значениями параметров.
  3. Длительная работа с предельно допустимыми значениями в будущем может повлиять на надежность работы устройства.

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.

Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом.  Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet  можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов.  Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень,  добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобывыбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Подготовительные работы

Для работы потребуется ряд элементов и деталей, которые можно приобрести в специализированном магазине или взять из другого устройства:

  • Стабилизатор тока lm317;
  • R-3 – сопротивление 0.1Ом*2 Вт;
  • TR-1 – трансформаторное устройство силового типа;
  • T-1 – транзистор вида КТ-81-9Г;
  • R-2 – сопротивление действие 220Ом;
  • F-1 – предохраняющий элемент 0.5 А и 250В;
  • R-1 – сопротивление 18К;
  • D-1 – светодиод IN-54-00;
  • P-1 – сопротивление 4,7 К;
  • BR-1 – светодиодный барьер;
  • LED-1 – цветной диод;
  • C-1 – конденсаторный аппарат модификации с параметрами 3 300 мкф*43V;
  • C-3 – конденсаторное устройство модификации 1мкф*43V;
  • C-2 – конденсаторный элемент керамического вида 0.1 мкф.

Перечень может видоизменяться в зависимости от разновидности применяемой схемы подключения.

Рабочая схема подключения

Предварительно перед сборкой преобразователя lm317t нужно приобрести все составляющие из вышеперечисленного списка.

Чаще всего такой СН применяют в комплекте со светодиодами

Основной деталью изделия является трансформатор, который можно извлечь из любого электрического прибора: музыкальный центр, телевизор или небольшая магнитола. Также его можно приобрести, специалисты рекомендуют отдавать предпочтение модификации TBK110. Однако выходное напряжение модель может производить только со значением 9В.

Схемы стабилизаторов и регуляторов тока

Существуют как минимум четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто своими руками:

  1. На кренке.
  2. На паре транзисторов.
  3. На операционном усилителе.
  4. На микросхеме импульсного стабилизатора.

Разберем, какие главные особенности имеет каждая из рассматриваемых модификаций.

На кренке

Для сборки своими руками простейшего стабилизатора для светодиодов для авто на 12 вольт потребуются:

  1. Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
  2. Резистор на 120 Ом.
  3. Печатное плато или перфорированная панель.

На изображениях наглядно представлено расположение основных компонентов схемы простейшего стабилизатора для светодиодов в авто:

На второй схеме на входе с АКБ применяется диод выпрямляющего типа 1n4007.

На двух транзисторах

Одним из самых популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт, который также собирается своими руками, на сегодня является схема на двух транзисторах.

Переменное напряжение номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и, проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор параметрического типа VD1 и проходит к резистору R2. Затем с его движка передается на ключ составного транзистора VT1 VT2. Уровень его открытости определяется состоянием движка резистора переменного типа R2 – в нижнем положении регулятора транзисторы перекрыты и напряжение не поступает в нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы полностью открыты, напряжение прилагается к нагрузке.

Приведенная модель стабилизатора напряжения для авто чаще всего применяется для дневных ходовых огней на базе светодиодов и позволяет успешно подстраивать параметры бортового тока под характеристики прибора освещения.

На операционном усилителе

Стабилизатор напряжения на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда возникает необходимость для его работы в расширенном диапазоне рабочих параметров. Ниже приведенная схема такого устройства. Главная его особенность в том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка 1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%. Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе в двойной амплитуде – меньше 60 мкВ.

Среди главных особенностей его работы выделяются:

  1. Рабочий интервал температуры – от -20 до +60 градусов.
  2. Термический дрейф напряжения на выходе – меньше 0,05%.
  3. Возможность повышения напряжения на выходе до 27-30 вольт.

Для решения последней задачи нужно между выводами «7» и «+25» установить резистор на 200 Ом. Каскад транзистора VT1 выполняет роль динамической нагрузки для VT4 и при этом повышает общий коэффициент усиления. Транзистор П702А можно заменить на аналоги П702 или КТ805, при этом КТ603Г – соответственно на П308 или П309, а также КТ201В и КТ203В — на МП103 либо МП106.

На микросхеме импульсного стабилизатора

Когда от стабилизатора напряжения для авто требуется высокий коэффициент полезного действия, лучше собрать своими руками устройство с использование импульсных составляющих. Наиболее распространенной является ниже представленная схема МАХ771 (или аналогов 770, 772).

Стабилизатор импульсного типа на выходе имеет мощность в 15 ватт. Элементы цепи R1 и R2 разделяют показатели напряжения на точках выход. В случае, когда оно становится выше базового, импульсные выпрямители просто снижаются его выходное значение. В обратном случае прибор будет, напротив, увеличивать данный параметр на выходе.

Монтаж и установка своими руками импульсного стабилизатора напряжения для светодиодов в авто разумна, когда его показатель превышает 16 вольт. При возникновении повышенного падения нагрузки в цепь следует внедрить операционный усилитель.

Легко о простом. Сила тока, напряжение и их стабилизация

От напряжения зависит, насколько стремительно электроны движутся по проводнику. Многие страстные любители жёсткого компьютерного разгона увеличивают напряжение ядра центрального процессора, благодаря чему тот начинает функционировать быстрее.

Сила тока – это плотность движения электронов внутри электрического проводника. Данный параметр чрезвычайно важен радиоэлементам, работающим по принципу термоэлектронной вторичной эмиссии, в частности, источникам света. Если площадь поперечного сечения проводника не в состоянии пропустить поток электронов, избыток тока начинает выделяться в виде тепла, вызывая значительный перегрев детали.

Для лучшего понимания процесса проанализируем плазменную дугу (на её основе работает электроподжег газовых плит и котлов). При очень высоком напряжении скорость свободных электронов до такой степени велика, что они могут легко «пролетать» расстояние между электродами, формируя плазменный мостик.

А это электронагреватель. При прохождении через него электронов они передают свою энергию нагревательному элементу. Чем выше сила тока, тем плотнее поток электронов, тем сильнее нагревается термоэлемент.

Для чего необходима стабилизация тока и напряжения

Любой радиоэлектронный компонент, будь то лампочка или центральный процессор компьютера, требует для оптимальной работы чётко лимитированное количество электронов, которое течёт по проводникам.

Поскольку речь в нашей статье идёт о стабилизаторе для светодиодов, о них и поговорим.

При всех своих преимуществах светодиоды имеют один минус – высокая чувствительность к параметрам питания. Даже умеренное превышение силы и напряжения может привести к выгоранию светоизлучающего материала и выходу из строя диода.

Сейчас очень модно переделывать систему освещения автомобиля под LED освещение. Их цветовая температура намного ближе к естественному освещению, чем у ксенона и ламп накаливания, что значительно меньше утомляет водителя при длительных поездках.

Однако это решение требуется особый технический подход. Номинальный ток питания автомобильного LED-диода – 0,1-0,15 мА, а пусковой аккумулятора – сотни ампер. Этого хватит, чтобы выжечь очень много дорогостоящих элементов освещения. Что бы этого избежать используют стабилизатор 12 вольт для светодиодов в авто.

Ампераж в автомобильной сети постоянно меняется. Например, автомобильный кондиционер «кушает» до 30 ампер, при его отключении электроны, «выделенные» на его работу уже не вернутся назад в генератор и аккумулятор, а перераспределятся между остальными электроприборами. Если лампе накаливания, рассчитанной на 1-3 А дополнительные 300 мА роли не сыграют, то диоду с током питания 150 мА несколько таких скачков могут стать фатальными.

Ради гарантии длительной работы автомобильных светодиодов используют стабилизатор тока на lm317 для мощных светодиодов.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

↑ Итого

Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай. Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.