Содержание
Цифровой регулятор громкости на BA3520
Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.
Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.
И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.
Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.
Переменный регулятор громкости на резисторе, транзисторе, микросхеме
Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.
Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.
Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.
Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).
Вместо заключения…
Хотелось бы добавить, что бесконечные споры, ведущиеся на аудиофильских форумах о правильности/неправильности применения тонкорректирующих цепей зачастую идут в разрез с общей идеологией Hi-End, сутью которого прежде всего является максимально приближенное к реальности музыкальное воспроизведение, при котором исчезают улавливаемые на слух отклонения от оригинала.
Для правильного восприятия музыкальной программы необходимо создавать при воспроизведении, которому ваши соседи явно не будут рады. Так что тонкомпенсированный регулятор громкости можно воспринимать как удачный компромисс сохранения правильного тембрального окраса музыки в домашних условиях.
Регуляторы громкости и тембра
PT2256V — электронный регулятор громкости, характеристики, даташит Микросхема PT2256V фирмы Princeton Technology Согр. предназначена для применения в аудиотехнике. Практически микросхема представляет собой аналог сдвоенного переменного резистора, управляемого с помощью двух кнопок (UP и DOWN). Регулировка осуществляется 32-мя ступенями. Полное сопротивление каждого «переменного резистора» составляет 51 кОм. Имеется отвод …
1 3093 0
Микросхема TDA7302, TDA7306 — аудиопроцессор с цифровым управлением
Микросхема TDA7302, TDA7306 представляет собою аудиопроцессор с цифровым управлением. Диапазон напряжений питания = 6…14 В; Управление через последовательную шину данных (TDA7302) или последовательный интерфейс (TDA7306); Выбор между тремя стерео- и одним моно- входами; Управление…
1 3716 0
Микросхема TC9421F — стерео регулятор громкости, баланса, тембра (упр. 3х шина)
Микросхема TC9421F представляет собою двухканальный регулятор громкости, баланса и тембра с управлением по трехпроводной шине. Напряжение питания = 6…12 В; Коэффициент нелинейных искажений = 0,005%; Диапазон регулировки коэффициента передачи . .0…-78дБ; Шаг регулировки в диапазоне…
0 3605 0
Микросхема TC9412AP, TC9413AP — двухканальный аттенюатор с цифровым управлением
Микросхема TC9412AP, TC9412AF, TC9413AP представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания: при однополярном питании (VGND = -Vсс = 0 В) = 6..18В, при двухполярном питании (VGND = 0 В) ±6…±17 В; Коэффициент нелинейных искажений = 0,005%; …
0 2607 0
Микросхема TC9260P, TC9260F — двухканальный аттенюатор с цифровым управлением
Микросхема TC9260P, TC9260F представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания = 4,5…12 В; Коэффициент нелинейных искажений = 0,01%; Диапазон регулировки коэффициента передачи = 100 дБ; 40 ступеней громкости; Коэффициент взаимного влияния каналов…
0 3033 0
Микросхема TC9235P, TC9235F — двухканальный аттенюатор с цифровым управлением
Микросхема TC9235P, TC9235F представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания = 4,5…12В; Коэффициент нелинейных искажений = 0,01 %; Диапазон регулировки коэффициента передачи = 100 дБ; Встроенный ЦАП для управления индикатором уровня; …
0 3366 0
Микросхема TC9210P, TC9211P — двухканальный аттенюатор с цифровым управлением
Микросхема TC9210P, TC9211P представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания: при однополярном питании (Vgnd = 0 В) Vсс = 6…17В, при двухполярном питании (Vgnd = 0 В) Vcc = ±6…±17 В; Коэффициент нелинейных искажений = 0,005%; Диапазон…
0 3307 0
Микросхема SSM2160, SSM2161 — 4/6-канальный регулятор громоксти и баланса
Микросхема SSM2160, SSM2160P, SSM2160S, SSM2161, SSM2161P, SSM2161S представляет собою четырех/шестиканальный регулятор громкости и баланса с цифровым управлением. Напряжение питание = +10…+20 (+5…±10) В ; SSM2161 = четыре канала ; SSM2160 = шесть каналов ; 7-рвзрядная…
0 3006 0
Микросхема M62429P — двухканальный регулятор громкости с цифровым управлением
Микросхема M62429P представляет собою двухканальный регулятор громкости с цифровым управлением. Номинальное напряжение питания = +5 В; Диапазон регулировки громкости = 0…-83 дБ; Шаг регулировки громкости = 1 дБ; Коэффициент нелинейных искажений = 0,01 %; Диапазон рабочих температур…
0 3965 0
Микросхема LM1992N — стерео регулятор громкости и тембра с цифровым управлением
Микросхема LM1992N представляет собою двухканальный регулятор громкости и тембра с цифровым управлением. Напряжение питания = 6…12В; Коэффициент нелинейных искажений = 0,15%; Диапазон регулировки коэффициента передачи = 80 дБ; Диапазон регулировки фадера = 40 дБ; Диапазон…
0 2255 0
1
Схема регулятора тембра
Регуляторы тембра и громкости контроллер имеют операционный. Подходит он для усилителей разной мощности. Диоды в данном случае устанавливаются довольно редко. Выпрямители есть только в моделях, где транзисторов менее трех штук. Резисторы в приборах включаются с маркировкой «ВС». Пропускная способность у них довольно хорошая, но они чувствительны к высоким температурам. Конденсаторы во многих моделях стоят биполярные. Предельное сопротивление регуляторы тембра и громкости способны выдерживать на уровне 3 Ом. В стандартной модели гнездо имеется «РРА» для обычного кольца. Дроссель с резистором соединяются только через преобразователь.
Как устроен регулятор?
Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе керамические конденсаторы. Их частотность, как правило, указывается в маркировке.
В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.
Самостоятельная сборка регулятора
Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой «2НН». Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.
Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.
Профессиональные модели
Профессиональные регуляторы громкости звука микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется подстроечный резистор. Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается ферритовое кольцо.
Переменный резистор.
Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора:
Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает…
Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя
Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме)
Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до R_{max}. А R_{max} — это ни что иное как полное сопротивление резистивного слоя.
Конструктивно переменные резисторы бывают поворотные, то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:
Переменный резистор ползункового типа выглядит несколько иначе:
Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором — к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости — при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит такой резистор так:
Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.
Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически — это подстроечные резисторы. Давайте уделим немного времени и им!
Изготовление конструкции
Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.
Полезное: Самодельная инфракрасная печь
Готовые для пайки платы
Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.
кнопочный регулятор — потенциометр
Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.
Фьюзы биты
На рисунке показаны настройки фузов для микроконтроллера ATTiny13
↑ Об управлении
Для управления работой регулятора применён микроконтроллер ATMega8, но можно использовать и любой другой МК, отвечающий следующим требованиям: три свободных линии порта ввода/вывода (clock для тактирования регистра, data для передачи данных и storage для фиксации данных). Ниже приведена функция, посылающая данные на сдвиговый регистр. На авторство не претендую, т.к. данный код можно встретить на сайте AVR devices. Ничего сложного в ней нет – цикл по числу передаваемых бит, в котором накладывается маска, для выделения одного бита и соответствующий вывод в порт, а в конце дёргаем строб для фиксации данных в регистре. Функция отправки данных в регистр под спойлером. Показать / Скрыть текст
#define SH_CP PORTC.0 // строб данных #define DS PORTC.1 // данные #define ST_CP PORTC.2 // строб сохранения данных // вывод в сдвиговый регистр void putout (unsigned char temp) { unsigned char copy_temp; unsigned char counter; copy_temp = temp; for (counter = 0; counter < 8; counter++) { // цикл для 8 битов // Проверяем крайний левый бит если он равен 1 то записываем в линию данных 1 if (copy_temp & 0Ч80) {DS = 1;} else {DS = 0;} // иначе записываем 0 //Дёргаем ногой, чтоб пропихнуть бит в регистр SH_CP = 1; SH_CP = 0; copy_temp = copy_temp < < 1 ; // Сдвигаем все биты переменной темp влево на один бит } //Дёргаем ногой для сохранения данных в регистре. ST_CP = 1; ST_CP = 0; DS = 0; };
Стоит сказать, что данный аттенюатор работает в инверсном режиме относительно битов данных: при выводе в регистр значения «0» громкость будет максимальна, «63» – минимальна. Аттенюатор, при необходимости, легко масштабируется на некоторое число бит с увеличением количества ступеней регулирования.
На печатной плате младший разряд подведён к выводу Q1 регистра (а не Q0, как было бы логичнее), связано это с небольшими трудностями в разводке дорожек, так как Q0 находится на другой стороне микросхемы нежели выводы Q1-Q7. Имея это ввиду, следует сдвинуть выходной код в лево на один разряд («<< 1» в С или «shl 1» в Asm). В моей программе можно заметить сдвиг не в лево, а вправо связано это вот с чем: для управления у меня стоит механический энкодер и алгоритм его обсчёта изменяет переменную-счётчик на 4 за один щелчок, то есть изначально переменная громкости считается со сдвигом влево на 2 разряда.
Профессиональные модели
Профессиональные регуляторы микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается
Как устроен регулятор?
Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе Их частотность, как правило, указывается в маркировке.
В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.
Профессиональные модели
Профессиональные регуляторы микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается
Электронные регуляторы тембра
Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.
Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.
Доброго времени суток.
Сегодня я решил объединить несколько вопросов в одну статью (тем более, что решение по обоим проблемам будет одинаковое).
Как правило, при исчезновении значка громкости (да и вообще при разных проблемах с ним) достаточно проделать ряд нехитрых шагов, чтобы восстановить работу. Приведу их ниже по порядку.
Модели микрофонов с регуляторами
Микрофон с регулятором громкости является на сегодняшний день распространенным девайсом, а микросхема в нем обычно имеется серии «МК22». Пропускная способность у моделей довольно высокая, сигнал проходит хорошо. В стандартной схеме диодов имеется два. Один из них, как правило, располагается возле запирающего механизма. Конденсаторы устанавливаются с различными параметрами. Это необходимо для того, чтобы контролировать частоты различной величины.
Сопротивление у них в среднем выдерживается до 4 Ом. Конденсаторы в регуляторе должны быть только электролитические. В данном случае это даст большой прирост к чувствительности прибора. Резисторов в стандартной схеме имеется до восьми единиц. Ими сопротивление в среднем выдерживается на уровне 3 Ом. Непосредственно запирающий механизм регулятор громкости имеет в виде контроллера.
Применение электронной модели
Электронный регулятор громкости устанавливается практически на всех звуковых девайсах. Изменять колебания при этом можно различными способами. Чаще всего можно встретить плавные контроллеры, которые позволяют очень тонко настаивать звук, однако есть и скачковые системы. В таком случае изменение параметров осуществляется пошагово и резко. В студиях звукозаписей имеются многоканальные устройства для микшеров. Они позволяют регулировать множество эффектов. Если рассматривать комбинированный электронный регулятор громкости, то многое в данном случае зависит от акустической системы.
Схемы индикации.
Блок индикации на основе микросхемы К155РЕ3:
увеличение по клику
Непосредственно счётный узел построен на счётчиках IC1 и IC2. Переключателями S1-S5 задаётся первоначальный уровень громкости (в двоичном коде!!!), который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленного значения.
На микросхемах IC6, IC7 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).
Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.
Микросхема IC3 используется как преобразователь двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.) При желании сделать индикацию в децибелах, достаточно изменить прошивку IC3. (Опять напоминаю, что микросхемы К155РЕ3 однократно программируемые. Таким образом для смены прошивки придётся использовать новую микросхему). «Прошивка» очевидна, поэтому не приводится.
IC4, IC5 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC4 и IC5 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.
Блок индикации на основе микросхемы К155ПР7:
увеличение по клику
Здесь всё, как в предыдущей схеме, только вместо микросхемы памяти используется специализированная микросхема для преобразования двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.)
Блок индикации без микросхем памяти. Учитывая, что вышеуказанные микросхемы на сегодняшний день являются довольно труднодоставаемыми, была разработана схема индикации на обычных счётчиках:
увеличение по клику
Подробнее о схеме: непосредственно счётный узел построен на счётчиках IC1 и IC2. Для формирования двоично-десятичного кода используются IC3, IC4. Переключателями S1-S5 (в двоичном коде!!!) и S6-S10 (в двоично-десятичном коде!!!) задаётся первоначальный уровень громкости, который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленных значений.
На микросхемах IC7, IC9 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).
Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.
IC5, IC6 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC5 и IC6 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.
Недостатки схемы: 1. необходимость двойного задания начального уровня громкость — S1-S5 в двоичном коде и S6-S10 тоже самое, но в двоично-десятичном коде.(если использовать общие группы переключателей, что часто встречается в Интернете, будет несоответствие между показаниями индикатора и реальным уровнем громкости).
2. из-за помех по цепям питания возможно несоответствие между показаниями индикатора и реальным уровнем громкости. Для избежания этого необходимо обязательно на каждый счетчик установить по цепям питания шунтирующие конденсаторы, а на выключателе питания использовать искрогасящие цепи. При такой организации схема эксплуатируется уже в течении 2 лет и показала надёжную работу!
Продолжение следует…
Материалы, из которых изготавливаются резисторы
В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.
Проволочные резисторы
Рисунок 9 – Проволочные резисторы
Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.
Металлопленочные резисторы
Рисунок 10 – Металлопленочные резисторы
Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.
Металлооксидные пленочные резисторы
Рисунок 11 – Металлооксидные пленочные резисторы
В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.
Фольговые резисторы
Рисунок 12 – Фольговые резисторы
Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).
Углеродные композиционные резисторы
Рисунок 13 – Углеродные композиционные резисторы
До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.
Углеродные пленочные резисторы
Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.