Содержание
Простое зарядное устройство стабилизатор тока из подручных материалов
Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.
Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.
В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:
- два входа (инвертирующий и неинвертирующий);
- один выход.
Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.
Зарядное устройство или простой стабилизатор – это прибор, который:
- сглаживает пульсации сети;
- поддерживает прямую линию графика тока на одном уровне.
Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.
Читать также: Методы оценки износа оборудования
Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.
В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.
Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.
Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.
Виды
Существует множество зарядок, подходящих для определенных марок и моделей инструментов. Все их можно разбить на основные виды.
Аналоговые со встроенным блоком питания
Аналоговые со встроенным блоком питания — довольно востребованы. Это объясняется невысокой стоимостью. Обычно не относятся к профессиональному оборудованию, быстро выходят из строя и «не хватают звезд с неба». Минимальная задача, которую, как правило, ставят их производители — получить постоянное напряжение и токовую нагрузку, необходимую для работы.
Устройства работают по принципу стабилизатора. Можно сделать самостоятельно, используя приведенную схему. Для работы нужно запомнить:
- Напряжение на выходе блока-зарядки — больше номинала батареи.
- Подходит любой тип аккумулятора.
- Можно использовать обычную монтажную плату.
- Такие стабилизаторы применяют компенсационный принцип: ненужная энергия, тепло отводится. Для его рассеивания можно взять, например, медный радиатор. Площадь — 20 см².
- Трансформатор на входе (Тр1) изменяет напряжение с 220 до 20 В. Его мощность определяется по току и напряжению на выходе.
- Ток выпрямляется диодным мостом (VD1).
- Можно позаимствовать решение производителей: сборку диодов Шоттки.
- После выпрямления ток — пульсирующий, что вредно. Для сглаживания нужен электролитический конденсатор (С1).
- В качестве стабилизатора идет КР142ЕН. Для 12 В ее индекс — 8Б.
- Управление — на основе транзистора (VT2) и резисторов (подстроечных).
- Автоматическое отключение после зарядки обычно не предусматривается. Придется самостоятельно определять необходимое время. Как вариант, можно использовать цепь, включающую диод (VD2), транзистор (VT1). После зарядки светодиод (HL1) тухнет. Есть и более серьезные варианты с коммутатором и электронным ключом, отключающиеся автоматически.
Аналоговые зарядки с внешним блоком питания
Аналоговые с внешним блоком, как видно из названия, состоят:
- из сетевого блока;
- зарядника.
Блок — обычный, включает:
- трансформатор;
- диодный мост;
- выпрямитель;
- конденсаторный фильтр.
В фабричных сборках обычно нет теплоотвода. Его роль может выполнять резистор повышенной мощности. Одна из типичных причин поломок — в тепловом режиме.
Чтобы исправить ситуацию, для начала нужно выяснить, работает ли источник питания. Если функционирует, его дополняют схемой управления, если нет — ищется другой. Вполне подойдет, например, от ноутбука. Он имеет 18 В на выходе, что вполне достаточно. Остальные детали обычно найти не составляет труда. Они очень мало стоят, можно позаимствовать из другой техники.
Схема блока управления представлена ниже. Используется транзистор KT817, для усиления — КТ818. Нужен радиатор. Примерная площадь — 30−40 см². Здесь будет рассеиваться до 10 Вт
Многие китайские производители пытаются экономить буквально на каждой мелочи. Этого нужно избегать, если нужно более или менее достойное качество. В самодельной схеме есть подстроечник на 1 кОм. Он нужен для точной установки тока. На выходе — резистор на 4,7 Ом. Он рассеивает тепло. Светодиод оповестит об окончании зарядки
Импульсные
Аналоговые устройства долго заряжаются: в среднем — 3−5 часов. Хотя для бытовых целей это не страшно. Другое дело — профессиональная сфера, где «время — деньги». Стоит такая продукция — соответствующе, в наборе обычно два аккумулятора.
Профессионалы чаще используют импульсные зарядные устройства. Они обладают интеллектуальной схемой управления процессом. Время полной зарядки впечатляет: около одного часа. Конечно, можно сделать такой же быстрый аналоговый зарядник, но тогда впечатлять будут его вес и размеры.
Импульсные устройства компактны и безопасны. Высокие качества требуют продуманной, сложной схемы. Однако можно повторить и ее. Схема ниже подходит для работы с никель-кадмиевыми аккумуляторами с третьим сигнальным контактом.
Применяется известный контроллер MAX713. Входное напряжение —25 В. Источник питания — простой, поэтому его схемы здесь нет.
Полученное в итоге зарядное для шуруповерта «отличается умом и сообразительностью». Оно проверяет напряжение и включает режим ускоренного заряда. Аккумулятор готов примерно через 1−1,5 часа. Схема позволяет выбирать:
- напряжение заряда;
- тип батареи.
На ней указано значение резистора (R 19) для переключения режимов и положение перемычек. Используя предложенный рисунок, можно отремонтировать поломку. Дополнительным стимулом станет финансовый вопрос. Экономия как минимум в два раза.
Альтернативные системы
Что же ребята, сейчас небольшие две конструкции которые действительно являются альтернативными.
Основаны они на небольшой плате – повышающий стабилизатор напряжения от USB. Такую можно заказать на известном китайском сайте, стоимость всего 100 рублей (можно найти и дешевле, однако я брал у проверенного продавца). Конструкция этой платы имеет USB выход с одной стороны и два полюса «+» и «-» с другой.
К этой микросхеме можно подключить любой источник питания до 5 Вольт (хоть батарейку 1,5 Вольта, хоть аккумулятор в 3,2 Вольта), он автоматически поднимет напряжение до нужной для телефона. Просто вставляете кабель в USB порт и заряжаете смартфон. Так вот, два способа:
1) Это обычная батарейка
Подсоединяем к плате, к выходам, другой стороной к телефону и все зарядка пошла, смотрим фото и ниже на видео.
2) Солнечная батарея
Можно подсоединить к этой плате и солнечную батарейку, положить конструкцию на солнце и также пойдет зарядка.
В моем эксперименте это не удалось, солнце было вечернее, а солнечная панелька слабая, так что заряд не шел. Однако при дневном свете зарядка идет. Для такой системы нужна панелька помощнее, тогда все будет работать, буквально на 100 – 200 мА.
Сейчас видео версия статьи, смотрим.
Вот такая вот статья получилась, думаю было интересно, читайте наш АВТОБЛОГ.
Комментарии
09.12.2016
Val
1.Первый способ для смартфонов с их большими по емкости аккумуляторами не подойдет — величины зарядного тока с USB выхода магнитолы может не хватить,все таки основное значение этого порта — считывать инфу с носителя,а не заряжать различные девайсы. Насколько мне помнится,по току сей порт сродни такому же на компьютере и составляет не больше 500мА(или даже меньше).Телефоны с небольшим аккумулятором может и потянет.
2.Второй способ странный,но возможно,кому то действительно позарез будет нужно позвонить.
3.Оптимальный,но необходимо таскать с собой повербанк.
Из альтернативных вариантов в машине не подходит ничего.Солнечный повербанк сам по себе бестолковая вещь,в наших широтах уповать на солнце нелепо. В качестве обычных ПБ пойдут.Было протестировано несколько таких,вывод — если вы живете не в Африке,забудьте про солнечную подзарядку — зарядные токи там просто смешные.
А повышающий стабилизатор напряжения лучше заменить понижающим.Зачем использовать батарейки,когда в автомобиле уже есть 12в.? В той же ридной китайщине таких стабилизаторов навалом.Я себе заказал такой — на входе от 7 до 29в.,на выходе 2 USB разьема. Общий ток по уверениям производителя до 5 А!
Но это в теории,на практике при таком токе девайс будет греться,нужен радиатор.
Но такие токи мне не нужны,максимум что нужно — 1А на телефон и примерно столько же на регистратор,так что обошелся без радиатора.Установил стационарно в свободный кармашек на торпеде,вдобавок установил туда же индикатор на 12в. для контролирования состояния автомобильного акк.Катаюсь третий год,доволен.Если интересно,могу фотки показать.
Схемы зарядного устройства для авто АБ
Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.
Простые схемы
Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.
Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:
-
Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.
-
Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .
-
Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.
В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.
Недостатки этих схем очевидны — нет возможности регулировать параметры заряда. То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).
И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.
Схемы с возможностью регулировки
Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.
Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда
Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).
Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.
Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).
Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).
Какие бывают беспроводные зарядки
Зарядные устройства на базе технологии Qi, существующие в данный момент на рынке, отличаются друг от друга по области применения. Они бывают переносные или встроенные в мебель, выпускаются для дома, офиса или автомобиля. “Домашние” беспроводные зарядные устройства работают от розетки или от ПК. Это самый распространенный тип зарядок, который оптимально смотрится в интерьере.
Беспроводная зарядка Nillkin Phantom — еще и оригинальная лампа
Автомобильные беспроводные зарядки работают от прикуривателя в машине. Они имеют удобные крепления для размещения зарядки в салоне авто — к примеру, на лобовом стекле или вентиляционной решетке.
Автозарядка Mophie крепится к решетке, а смартфон к ней — на магните
Портативные беспроводные ЗУ обычно совмещены с внешним зарядным устройством (пауэрбанком). Это позволяет носить их с собой во время прогулок или путешествий и подзаряжать смартфон на ходу, даже если поблизости нет розеток.
Ёмкий беспроводной пауэрбанк Harper на 8 000 мАч защищен от ударов.
Наконец, самый футуристический тип — это встраиваемые беспроводные зарядки. Они подключаются к скрытой розетке или напрямую к электропроводке и встраиваются прямо в мебель: столы, тумбочки, барные стойки. Такими устройства успешно пользуются кофейни Starbucks, предлагая посетителям зарядные коврики Powermat.
Зарядные коврики Powermat
Будущее технологий беспроводной зарядки очень перспективно. Это может быть и интеграция в состав умного дома, и пункты зарядки мобильных устройств в общественных местах — в кафе, метро, аэропортах. Пока технологию Qi поддерживают только флагманские смартфоны, но неудивительно, если со временем беспроводная зарядка станет доступна устройствам из среднего и бюджетного сегмента.
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
Общие сведения о процессе зарядки АКБ
Заряд автомобильного аккумулятора необходим при падении напряжения на клеммах менее 11,2 Вольта. Несмотря на то, что аккумуляторная батарея может запустить двигатель автомобиля и при таком заряде, во время длительной стоянки при пониженных напряжениях начинаются процессы сульфатации пластин, которые приводят к потере емкости АКБ.
Поэтому во время зимовки автомобиля на стоянке либо в гараже необходимо постоянно производить подзарядку аккумулятора, следить за напряжением на его клеммах. Более лучший вариант – снять аккумуляторную батарею, занести в теплое место, но все равно не забывать о поддержании его заряда.
Заряд аккумулятора ведется постоянным либо импульсным током. В случае зарядки от источника постоянного напряжения обычно выбирается ток заряда равный одной десятой от емкости АКБ.
Например, если емкость аккумуляторной батареи составляет 60 ампер-часов, ток заряда следует выбирать 6 Ампер. Однако, исследования показывают, что, чем меньше ток заряда, тем наименее интенсивно идут процессы сульфатации.
Мало того, существуют методы десульфатации пластин аккумулятора. Они заключаются в следующем. Сначала АКБ разряжается до напряжения 3 – 5 Вольт большими токами малой длительности. Например такими, как при включении стартера. Затем идет медленный полный заряд током около 1 Ампера. Такие процедуры повторяют 7-10 раз. Эффект десульфатации от этих действий есть.
Практически на таком принципе основаны десульфатирующие импульсные зарядные устройства. АКБ в таких приборах заряжается импульсным током. За период зарядки (несколько миллисекунд) на клеммы аккумулятора подается разрядный короткий импульс обратной полярности и более длительный зарядный прямой полярности.
Очень важно в процессе заряда не допустить эффекта перезаряда аккумуляторной батареи, то есть момента, когда он зарядится до предельного напряжения (12,8 – 13,2 Вольта в зависимости от типа АКБ). Это может вызвать закипание аккумулятора, увеличение плотности и концентрации электролита, необратимые разрушения пластин
Именно поэтому заводские зарядные устройства снабжены электронной системой контроля и отключения
Это может вызвать закипание аккумулятора, увеличение плотности и концентрации электролита, необратимые разрушения пластин. Именно поэтому заводские зарядные устройства снабжены электронной системой контроля и отключения.
Виды универсальных зарядных устройств
Выбирать «лягушку» надо по нескольким параметрам:
- зарядный ток;
- наибольшая емкость заряжаемого аккумулятора.
Также важен выбор источника напряжения для зарядки АКБ. Существует несколько разновидностей ЗУ, различающихся по этому параметру.
Источник напряжения | Тип входного разъема |
---|---|
Бытовая сеть 220 вольт | Встроенная сетевая вилка |
Универсальная последовательная шина (USB) | В большинстве случаев – USB-А |
Автомобильная бортсеть | CP-703 (разъем в прикуриватель автомобиля) |
Зарядник с розеткой для сети и разъемом USB.
Выпускаются более универсальные по этому параметру зарядники. Их оснащают двумя разъемами. Подобными устройствами можно пользоваться для зарядки как от сети, так и от входа USB.
Также можно выбрать ЗУ по уровню сервиса – полностью автоматические и с ручным управлением. Первые стоят несколько дороже.
Виды электрических схем ЗУ
Сделать зарядное устройство для шуруповерта можно самостоятельно. Для этого понадобится схема, набор электронных компонентов, паяльник с расходными материалами и определенные навыки и квалификация.
Перед выбором схемы надо учесть несколько моментов:
- импульсное зарядное устройство легче, компактнее, у него выше КПД, но оно сложнее в сборке и наладке;
- если режим зарядки и контроль ее завершения будет поддерживаться автоматически, то для NiCd, NiMH и Li-ion аккумуляторов алгоритм будет различаться – для первых двух типов зарядка производится стабилизированным током, литий-ионный заряжается по двухступенчатой (в некоторых случаях – трехступенчатой) схеме.
Две ступени заряда литий-ионных батарей.
Номинальный ток ЗУ определяется мощностью элементов силовой цепи (трансформаторов, диодов, транзисторов), и их надо подбирать в соответствии с необходимостью.
На 12 вольт
Схема простого зарядного устройства на 12 вольт, в котором параметры зарядки надо поддерживать вручную, не требует высокой квалификации для сборки и не нуждается в наладке.
Схема простого зарядного устройства.
Ток устанавливается потенциометром, параметры контролируются по амперметру и вольтметру. Трансформатор можно подобрать готовый, с напряжением на вторичной обмотке 12-15 вольт – например, ТПП-48 или ТПП-201-208. Параметры других элементов, от которых не зависит максимальный ток, указаны на схеме. Остальные выбираются в зависимости от потребного выходного тока.
Элемент | Требуемый ток | Тип |
VD1-VD4 | До 1 А | 1N4001 (1N400X) |
1А и выше | 1N5400 (1N540X) | |
VT1 | До 1 А | КТ815 |
1А и выше | КТ829 |
По мере снижения зарядного тока его надо подстраивать до выбранного значения. Если производится зарядка током до 0,2С, процесс может занять до 16 часов, поэтому ручное поддержание параметров крайне неудобно.
Зарядные устройства с автоматическим поддержанием параметров и алгоритмами, соответствующими типу аккумулятора, часто строят на микроконтроллерах. Схемы и прошивки можно найти в сети.
Пример схемы зарядника на микроконтроллере (без прошивки неработоспособна).
Также зарядные устройства строят на специализированных микросхемах. В качестве примера приведена схема зарядного устройства на MAX713 для никель-кадмиевых аккумуляторов. Очевидно, что схема достаточно сложна, но она универсальна (для различных напряжений), имеет режим тренировочного цикла и обеспечивает оптимальный режим зарядки, а также своевременное ее завершение. Это приводит к увеличению срока службы батарей.
Зарядное устройство для никель-кадмиевых аккумуляторов.
На 18 вольт
Принципиально схемы зарядных устройств для шуруповертов на 18 вольт не отличаются от 12-вольтовых. В большинстве случаев они приводятся к нужному номиналу настройкой параметров или (как в приведенной выше импульсной схеме) переустановкой перемычек. В схеме простого зарядного устройства достаточно применить трансформатор с большим выходным напряжением. Так, ТПП-209 имеет обмотку с напряжением 20 вольт. При его использовании можно заряжать 18-вольтовые аккумуляторы.
Переделка зарядного устройства от ноутбука
Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста. Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:
В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками
Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.
Окончательная подготовка портативного зарядного устройства к работе
После того, как термоклей остынет, можно подключать батарейку к контактной платформе и закрывать крышку корпуса. В нашем случае, в коробке из-под конфет рядом с «Кроной» осталось достаточно места для запасного элемента питания, который я также уложил. Теперь уверенности в том, что энергии мне хватит на весь поход, прибавилось. Но здесь нужно быть внимательным. Если корпус металлический, имеет смысл обклеить борта внутри изолентой. В противном случае, запасная батарейка при ходьбе может сдвинуться и соприкоснуться с алюминием обоими контактами. Это, в свою очередь, приведёт к замыканию и выходу «Кроны» из строя. В результате, владелец, понадеявшись на то, что возможность зарядить свой гаджет у него есть, останется без связи. Восстановить испорченную замыканием батарейку уже не удастся.
Одна батарейка подключена, вторая уложена на запас – можно приступить к испытаниям
Подключение гаджета к портативному зарядному устройству
После того, как крышка закрыта, подключаем USB-разъём провода к зарядному устройству, а второй его конец соединяем с гнездом телефона. После перевода микровыключателя в положение «вкл», зарядка начинает поступать на гаджет. Количество циклов будет зависеть от ёмкости батареи смартфона и качества используемой «Кроны». Если говорить о средних значениях, то аккумуляторная батарея ёмкостью 2000 мА·ч может быть полностью заряжена 2-3 раза (при использовании одной «Кроны»).
Гаджет подключен, и на его экране видно, что зарядка от портативного устройства поступает
После того, как устройство будет полностью заряжено, необходимо отключить провод, а также перевести тумблер в положение «выкл». Если этого не сделать, то светодиод, присутствующий на печатной плате от автомобильного устройства, очень быстро разрядит батарею.
После зарядки телефона тумблер устройства следует отключить
Заключение
Нужно помнить о том, что приемник будет присоединен к реальному, достаточно дорогому устройству–потребителю. Поэтому, перед присоединением нужно мультиметром проверить полярность на выходах приемника и наличие необходимого напряжения при работе собранной схемы – оно должно быть в пределах 4-5В.
Также нужно определиться, как подключать потребителя. Здесь два варианта – или напрямую к аккумулятору, но в этом случае не будет видно, заряжен он уже или нет при выключенном устройстве, или в штатный разъем питания. В обоих случаях обязательна проверка полярности и допустимых токов! Цена упущения – последующая функциональность мобильного устройства.
Дополнительную информацию о предмете статьи можно узнать из файла «Как сделать зарядное устройство». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.
В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:
www.autosecret.net
www.muzhik-v-dome.ru
www.radioskot.ru
www.cxemok.ru
www.future2day.ru
Мне нравится1Не нравится
Предыдущая
ПрактикаКак сделать зарядное устройство для аккумулятора автомобиля своими руками
Следующая
ПрактикаКак сделать датчик движения своими руками