Защита от переполюсовки и к.з. зарядного устройства

Содержание

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Сравнение сигналов с помощью компаратора

Формально любой ОУ можно включить как компаратор, но такое решение по ТТХ будет уступать компаратору по быстродействию и соотношению «цена/результат». В нашем случае, чем выше быстродействие, тем выше вероятность, что защита успеет отработать и спасти устройство. Я люблю применять компаратор, опять же от Texas Instrumets — LMV7271

На что стоит обратить внимание:

Теперь давайте добавим компаратор в наш проект в симуляторе и посмотрим на его работу в режиме, когда защита не сработала и ток не превышает аварийный (кликабельная картинка): Скачать файл для симуляции в MultiSIM можно — .

Что нам нужно… Нужно в случае превышения тока более 30А, чтобы на выходе компаратора был лог. 0 (GND), этот сигнал будет подавать на вход SD или EN драйвера и выключать его. В нормальном состоянии на выходе должна быть лог. 1 (5В TTL) и включать работу драйвера силового ключа (например, «народный» IR2110 и менее древние).

Возвращаемся к нашей логике: 1) Измерили ток на шунте и получили 56.4 мВ; 2) Усилили наш сигнал с коэффициентом 50.78 и получили на выходе ОУ 2.88В; 3) На прямой вход компаратора подаем опорный сигнал с которым будем сравнивать. Его задаем с помощью делителя на R2 и выставляет 3.1В — это соответствует току примерно в 30А. Данным резистором регулируется порог срабатывания защиты! 4) Теперь сигнал с выхода ОУ подаем на инверсный и сравниваем два сигнала: 3.1В > 2.88В. На прямом входу (+) напряжение выше, чем на инверсном входе (-), значит ток не превышен и на выходе лог. 1 — драйвера работают, а наш светодиод LED1 не горит.

Теперь увеличиваем ток до значения >30А (крутим R8 и уменьшаем сопротивление) и смотрим на результат (кликабельная картинка):

Давайте пересмотри пункты из нашей «логики»: 1) Измерили ток на шунте и получили 68.9 мВ; 2) Усилили наш сигнал с коэффициентом 50.78 и получили на выходе ОУ 3.4В; 4) Теперь сигнал с выхода ОУ подаем на инверсный и сравниваем два сигнала: 3.1В

ORing-контроллеры TI

ORing-контроллеры являются одним из популярных продуктов в портфолио компании TI, предназначенных для обеспечения защиты при горячем подключении источников питания с резервированием. Контроллеры подклассов N+1 и ORing предназначены для защиты шин питания hotswap c напряжениями 12…48 В от повышенных пусковых токов, их обратного протекания, повышенного тока при коротких замыканиях в цепи питания.

В номенклатуре ORing-контроллеров TI есть устройства для коммутации источников питания как по шине положительной полярности (High Side), так и отрицательной (Low Side). На рисунках 10, 11 приведены схемы включения ORing-контроллеров TI для применения в системах резервирования питания с положительной и отрицательной полярностью.

Рис. 10. Схема включения контроллеров ORing в системе резервирования питания положительной полярности

Рис. 11. Схема включения контроллеров ORing в системе резервирования питания отрицательной полярности

В таблице 3 приведены основные микросхемы ORing-контроллеров TI

Таблица 3. Основные ORing-контроллеры TI

Наименование Напряжение, В Специальные функции Тип управления
TPS2458/ 3.3; 12 Ограничение тока; встроенный ключ для 3.3 В Гистерезисное
TPS2410/ 0.8…16.5 Входной фильтр Линейное/гистерезисное
TPS2412// 0.8…16.5 Настраиваемый порог отключения Линейное/гистерезисное
LM5050 5…75 Устойчивость к выбросам 100 В Линейное
LM5051 -6…-100 Диагностика транзистора Линейное

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Основные причины, по которым аккумулятор не заряжается

Окисленные клеммы АКБ — одна из самых распространенных проблем

По каким причинам не идет зарядка на аккумулятор? Почему устройство может нагреваться и на заряжаться?

  1. Окисление клемм. При зарядке батарея зачастую не заряжается по этой причине. Произведите визуальную диагностику АКБ — если на клеммах виден белый налет, вероятность заряда будет невозможной, поскольку такое окисление будет вызывать большое сопротивление. Избавиться от такого налета можно, но это необходимо делать максимально аккуратно. Удаление налета происходит с применением наждачной бумаги мелкой зернистости. Снять необходимо только налет, свинец должен сохранить свой слой, в противном случае клеммы могут спадать с АКБ при езде по неровной дороге.
  2. Если при зарядке никаких результатов нет, это может быть обусловлено обрывом ремешка генератора. В некоторых случаях такая проблема проявляется в результате ослабления ремня или проскальзывании его на валу. В том случае, если произошел обрыв ремня, это будет и так видно. Ликвидировать такую неисправность можно только путем замены ремня. Что касается проскальзывания, то здесь причин может быть множество. К примеру, иногда это происходит в результате износа или растяжения. Довольно часто ремень проскальзывает в результате попадания на него или сам шкив влаги, в результате чего сила сцепления между этими элементами снижается. Соответственно, заряд аккумулятора будет неполноценным. Если ремешок просто износился, его достаточно будет подтянуть, если на шкиве имеются следы влаги — его необходимо высушить перед дальнейшей эксплуатацией авто.
  3. Если батарея греется, но при этом подзарядки аккумулятора недостаточно, возможно, причина заключается в окислении проводов на генераторе. Решить подобного рода неисправность можно зачисткой клемм и проводов, для чего также применяется мелкозернистая наждачка. Однако, проводка не всегда окисляется, иногда провода могут перегорать либо обрываться, что обусловлено скачками напряжения. Выявить это не так сложно. Как правило, если перегорают провода, водитель сможет услышать запах подгоревшей изоляции. Перед тем, как заменить выгоревшую проводку на новую, необходимо выявить причину, в противном случае даже новая проводка со временем прогорит. Причем последствия в последнем случае могут быть еще более серьезными.
  4. Может быть плохая зарядка, вернее недозарядка АКБ от генератора. Если у вас маленькие пробеги между пусками двигателя, просто генератор не успевает дозарядить.

Ответы на 5 часто задаваемых вопросов

Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.

Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты

Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.

Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.

По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.

Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора

Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Защита от переполюсовки

Когда ваше устройство не постоянно питается от блока питания, а вам нужно периодически вставлять клеммы в разъём, особенно часто это бывает с зарядными устройствами для аккумуляторов. Возникает вероятность случайно перепутать клеммы. Описанная схема на диодном мосту станет надёжной защитой от переполюсовки и индикатором вашей нечаянной ошибки.

Схема защиты от переполюсовки:

В технике есть такое жаргонное выражение «защита от дурака», оно вполне справедливо для устройств, которые так или иначе эксплуатируются большим количеством людей, среди которых обязательно найдётся невнимательные и рассеянные личности, которые сначала включают, а потом инструкцию читают.

Есть много разного рода защит от переполюсовки, ну к примеру сделать разъем специальной формы, что бы его кроме как правильно включить нельзя было. Но для радиолюбительских конструкций для этой цели достаточно хорошо подходит схема диодного моста.

Рисунок №1 – Схема защиты от переполюсовки

Всё очень просто и прозаично, вы просто включаете в свою схему дополнительный диодный мост или подключаете отдельную платку со схемой защиты от переполюсовки.

При такой организации устройства полярность на входе не имеет никакого значения, и вставляя клеммы в гнёзда блока питания вы ни за что не ошибётесь. У вас на выходе диодного моста всегда будет то, что нужно (А, Б).

Просто не забывайте, что дополнительные элементы могут привести к незначительным потерям мошьности.

Я не стал приводить номиналы элементов так как схема универсальная, вам их нужно подобрать самостоятельно.  Всё должно подходить по току и напряжению адекватному вашим потребностям. Я постарался наглядно показать диодный мост (В), а в качестве индикации ошибки, использовал двухцветный светодиод, который горит зеленым, когда полярность соблюдена.

Рисунок №2 – Полярность соблюдена – горит зелёный

Светодиод горит красным, когда я неверно подключил схему защиты к клеммам блока питания, но при этом на выходе схемы всегда строго соблюдается полярность, и моему устройству переполюсовка уже не страшна.

Рисунок №3 – Клеммы перепутаны – горит красный светодиод

Как видно по показанием мультиметра на выходе схемы защиты от переполюсовки всегда одинаковая полярность, что существенно снижает вероятность сгорания вашего устройства.

Для особо ленивых, я привёл пример своей печатной платы, и сборочный чертеж, можете просто перерисовать или добавить её в свою схему.

Рисунок №4 – Печатная плата и сборочный чертёж, пример

Надеемся приведенная схема защиты от переполюсовки поможет начинающим радиолюбителям избежать выхода из строя их устройств, потому не забывайте посещать  bip-mip.com

Защита от переполюсовки зарядного устройства

Защита от переполюсовки зарядного устройства вещь очень полезная, а иногда и необходимая. Случайно неправильно подключенная автомобильная АКБ может напрочь угробить зарядное или АКБ. Для защиты от «дурака» на практике применяют основные три вида защиты: схемы на тиристоре, простая защита с помощью реле и схема от переполюсовки на полевом транзисторе.

Защита от переполюсовки зарядного устройства на реле или тиристоре имеют свои недостатки.

Схемы на тиристоре довольно практичные и простые, но имеют потери напряжения на самом тиристоре около 2В, а в некоторых автомобильных зарядных при использовании такой схемы уже нечем будет заряжать АКБ.

Защита от переполюсовки на реле имеет инертность, что тоже не всегда хорошо, а полностью разряженная батарея может не запустить реле. При сборке зарядного устройства из блока питания компьютера рационально применять схему на полевике.

Схема защиты зарядного устройства

Рассмотрим поближе схему защиты от переполюсовки на полевом транзисторе. Потери напряжения на полевом транзисторе минимальные, а время срабатывания не более 1мкСек.

Работает схема вот таким образом. При правильном подключении полевой транзистор открыт, и весь ток поступает на выход схемы. При коротком замыкании, перегрузке, или переполюсовке падение напряжения на шунте и полевом транзисторе достаточно, что бы сработал маломощный биполярный транзистор. Когда транзистор сработал, он замыкает затвор полевого транзистора на землю, закрывая его полностью.

Через открытый переход маломощного транзистора поступает питание на светодиод. Параллельно светодиоду можно подключить бузер с генератором для звуковой индикации.

При срабатывании защиты полевой транзистор не греется, схема в таком состоянии может находиться довольно долго, пока не устранится короткое замыкание. От сопротивления шунта зависит ток срабатывания защиты.

Защита от переполюсовки зарядного устройства своими руками

Вот таким вот получился блок защиты от переполюсовки зарядного устройства.

Используемый полевой транзистор — IRFZ44N (можно заменить любым аналогом). Маломощный транзистор BC239C (или другой n-p-n аналог). Диод — 1N4007.

  • Шунт использовался от старого китайского мультиметра, защита при таком шунте срабатывает при токе 10А.
  • Тест с почти максимальной нагрузкой.
  • Имитация короткого замыкания.

Как видим эта защита зарядного устройства спасает не только от переполюсовки, но и от короткого замыкания или перегрузки. При использовании данной схемы в трансформаторных зарядных устройствах необходимо исключить скачки напряжение и как можно лучше его сгладить.

Демонстрация работы защиты.

Кому интересен вариант печатки защиты от переполюсовки на полевике, плату в формате lay может скачать в конце статьи. В качестве шунтов в ней используются два резистора по 0,1 Ом; 5 Вт (при таких значениях защита срабатывает при токе 11-12 А). При желании можно самостоятельно дополнить плату бузером с генератором или оставить, как есть.

Схемы защиты от КЗ

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты  от переполюсовки питания и от Кз (короткого замыкания). Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.В этой статье будет рассмотрено 3 варианта схемы защиты бп  от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Модель защиты 1

Это схема защиты бп наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Схема универсальная 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант простой 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Анализ схемы защиты бп

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Прикрепленные файлы: zashita_ot_perep

Вам было интересно? Напишите мне!

Всего Вам доброго!

Сергей Патрушин.

Имеется дома простое зарядное устройство. Обыкновенная зарядка, трансформатор, мост и провода. Облезли защитные пленки на клемах, и как теперь определить кто где! Было решено собрать простейшее устройство для защиты. Скажу что раньше видел нечто похожее, но пришлось самому составлять. Как раз было реле с UPS с 10А контактами.

Схема работает по такому принципу. Когда вы правильно подключаете клеммы к АКБ, то оставшийся заряд в АКБ замыкает реле и начинается зарядка, горит зеленый светодиод. Когда вы перепутали клеммы, загорается красный светодиод, сигнализирующий о том, что подключились не правильно. Простое устройство всего на нескольких детальках

Вот схема защиты от переполюсовки

R1-2 = 510
VD1-2= 1N4148 (Но можно любые) VD3-4 можно исключить
Релюха 12В 10-15А, как говорил ранее снял со сломанного UPS
Светодиоды любые

Печатная плата устройства защиты от переполюсовки:

Подключаем так:
Z+ — плюс зарядного устройства, их там два, какой именно нужен вам, определите сами, поскольку некоторые реле такого типа, замыкают контакты по разному
A+ — плюс АКБ. Сюда подключаем клемму плюса АКБ
G – это минус, его тонким проводом от минуса зарядки кидать

Схема была спаяем за 5 мин, и в работе себя показала достаточно достойно. Желаю удачи с повторением

Обновление.
На смену данной схеме была придумано мной еще более качественная схема защиты, которая помимо всех функций присущей старой схеме, еще умеет определять на сколько жив АКБ. Что избавит вас от таких проблем как сгорание зарядного устройства из-за старых убитых АКБ. Новую мою разработку вы можете посмотреть

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

С ув. Admin-чек

Вам понравилась эта статья?

Давайте сделаем подарок мастерской. Киньте пару монет на цифровой осциллограф UNI-T UTD2025CL (2 канала х 25 МГц). Осциллограф — это прибор, предназначенный для исследования амплитудных и временны́х параметров электрического сигнала. Стоит он дорого 15 490 руб., я не могу позволите себе такой подарок. Прибор очень нужен. С ним количество новых интересных схем увеличится в разы. Спасибо всем кто поможет.

Любое копирование материала строго запрещено мной ну и авторским правом..
Что бы не потерять эту статью киньте себе ссылку через кнопки справа
А так же все вопросы задаем через форму внизу. Не стесняемся ребята

Ну вот, как и обещал — вторая статья, которая посвящена системе защиты от переполюсовки, которое нашло довольно широкое применение в промышленных и самодельных зарядных устройствах. Данный вариант был выбран как особо простой и может быть повторен даже человеком, который никак не связан с электроникой.

Для реализации такой схемы защиты вам нужен только диод — всего один диод, который будет установлен в прямом направлении на плюсовой шине зарядного устройства.

Такая система на только проста, что для доработки зарядного устройства, его совсем не обязательно разобрать. Для реализации такой идеи мы используем самую главную функцию полупроводникового диода — в прямом направлении диод открыт, если же его подключить в обратном направлении, то он будет заперт.

Следовательно, если вдруг спутать полярность, то ток просто не будет идти, никаких хлопков, нагрева и прочих дымовых эффектов.

Но как мы знаем,
когда напряжение протекает через переход выпрямительного диода, то на выходе последнего будет спад напряжение в районе 0,7 Вольт, именно для того, чтобы спад был минимальным, мы будем использовать диоды ШОТТКИ (с барьером Шоттки) — на нем спад напряжения в районе 0,3-0,4 Вольт.
Единственный недостаток такой защиты заключается в том, что через диод будет течь довольно большой ток, что приводит к нагреву диод.

Для того диод обязательно нужно установить на теплоотвод. Диоды шоттки с больим током можно найти в компьютерных блоках питания. Диоды в указанных блоках из себя представляют трехвыводную диодную сборку, в каждой сборке два диода с общим катодом. Нужно подобрать диоды с током не мене 15 Ампер на каждый диод. В компьютерных блоках могут встречаться диоды с током до 2х30 Ампер.

Для начала нужно установить диод на теплоотвод, затем запараллелить аноды диодов, таким образом, мы соединили параллельно оба диода.

Автор; АКА КАСЬЯН

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Можно ли заряжать дома?

В случае отсутствия гаража допускается возможность подзарядки АКБ в квартире. Однако делать это лучше на балконе. В свое время этого процесса электролит выделяет вредный для человека сернистый газ и хлористый кислород. При его вдыхании вам головокружение и тошнота. Потому заряжаем в очень отдаленном и отлично открытом помещении. Также смотрите за состоянием электролита.

Нельзя допускать, чтоб аккумулятор бурлил. Это понижает его ресурс. Примерно легковой 60-амперный аккумулятор заряжается за 7-8 часов. При всем этом на ЗУ необходимо выставлять наименьшую силу тока. Для АКБ вредоносны стрессовые нагрузки. Если батарея длительно заряжается, либо одна из банок закипела через полчаса, означает, она неисправна.

Ремонт

Есть четыре способа, как починить зарядку на Айфон 5S или других моделей, и мы рассмотрим каждый подробней.

Починка изолентой

Это способ, который помогает предотвратить серьезные повреждения. Он актуален, когда нарушение изоляции провода только начало себя проявлять.

  1. Берем плотную изоленту.
  2. Обматываем кабель в месте повреждения и на 2-3 сантиметра в обе стороны от него.
  3. Отрезаем лишнее.

Такой кабель будет выглядеть не эстетично, но прослужит еще долго.

Термоусадка

Этот способ предполагает использование термоусадочной трубки. Надежней предыдущего. Выполняется ремонт следующим образом.

  1. В хозяйственном магазине приобретите термоусадочную трубку. Это специальный материал, который сужается при нагреве.
  2. Отметим, что подбирать трубку нужно в соответствии с диаметром кабеля, а точней, коннектора, поскольку он также будет защищен.
  3. Надеваем трубку на кабель, при этом заходя на 5-7 миллиметров на сам разъем. Длину подбираем в зависимости от размера поврежденной области, если она небольшая, то достаточно 5 сантиметров трубки.
  4. Далее короткими подходами (по несколько секунд) нагревайте трубку зажигалкой или спичкой.
  5. Усадка происходит при температуре от 110 градусов. Процедуру нужно проводить до тех пор, пока материал плотно не сядет на кабель.

Важно не перегреть кабель, поскольку существует риск усугубить ситуацию

Пайка

Предыдущие способы эффективны только при повреждении изоляции, но не при внутренних разрывах кабеля. В случае их наличия придется прибегнуть к помощи паяльника. Ремонт проводится по инструкции.

  1. Зачистите провода. В частности, уберите немного внешней изоляции, а после очистите жилы от внутренней.
  2. На край каждого контакта нанесите по капле флюса. Далее соедините по цветам провода и прихватите соединения паяльником по очереди.
  3. Каждый контакт отдельно нужно обернуть изолентой, чтобы не произошло замыкание.
  4. Всю конструкцию покройте изолентой или же наденьте термоусадочную трубку.

Такой вариант починки возможен, если кабель зарядки порвался на достаточном расстоянии от коннектора. В противном случае припаять его к проводам не удастся. Для ремонта нужно вскрывать штекер и прикреплять провода непосредственно на плату. Рассмотрим подробней инструкцию.

  1. Сначала нужно разобрать кабель. Для этого разрезаем корпус и аккуратно демонтируем коннектор. Пластик выкидывать не нужно.
  2. Удаляем все металлические части и снимаем силикон с поверхности устройства.
  3. Под ним находится небольшая микросхема, с которой аккуратно снимаем клей.
  4. Теперь нужно залудить контакты с помощью припоя.
  5. После этого проводится распиновка (припайка контактов).
  6. Далее нужно проверить работоспособность кабеля и собрать его.

Не нужно заниматься этим самостоятельно, если не уверены в своих силах. Вы можете только усугубить положение.

Ремонт за счет другого USB

Одна из возможных причин поломки – выход из строя коннектора, в таком случае приведённые ранее способы не помогут. Здесь возможен только ремонт с использованием другого кабеля. Отметим, что брать лучше провод, который неисправен, но вы уверены, что коннектор работает.

Сам процесс подразумевает припайку нового коннектора к другому кабелю. Выполняется это по инструкции, которая приведена для обычной пайки в предыдущем пункте.