Содержание
Как проверить оптрон — устройство для проверки оптрона
Для более удобной проверки оптрона можно использовать более интересную схему. Включает она в себя с минимум компонентов, а сборка ее занимает не более получаса.
Питание оптрона производиться через светодиод, который загорится, если исправный фотоизлучатель. Второй светодиод загорится, если исправный фотоприемник, через который течет ток к светодиоду.
Для наглядности второй вариант схемы был собран из элементов, которые были под руками. Роль подопытного играет оптопара PC817.
Роль гнезда для подключения оптрона выполняют остатки COM кабеля. Но лучше для таких целей использовать гнезда под микросхемы, тогда подключения оптрона станет более удобным.
Питание схемы осуществляется с помощью старого USB шнура. В общем, схема работает исправно сразу, и не требует дополнительной наладки. Если горят оба светодиода, тогда оптрон можно считать рабочим.
У многих возникнет вопрос, а если пробит выход оптрона, тогда же тоже будут светиться оба светодиода! В таком случае яркость второго светодиода будет значительно выше, это визуально очень хорошо будет видно.
Еще более простой способ проверки оптрона PC817
Понятно что использование китайского тестера для проверки оптопары не самый простой , точнее простой но не самый дешевый метод. Такой прибор не во всех есть в хозяйстве.
Поэтому предлагаю вашему вниманию более простой , а главное дешевый тестер оптронов.
Он состоит из двух кнопок , двух резисторов , светодиода и панельки ( сокета ) под микросхему.
Если кому интересно , вот ссылка
Описание, характеристики , Datasheet и методы проверки оптронов на примере PC817.
В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон ) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.
Схема включения
Стандартная схема включения РС817 представлена производителем в datasheet. С её помощью можно описать работу устройства. Для открытия транзистора на выходе на её вход необходимо подать питание. Обычно это делают через токоограничивающий резистор RD, дабы не спалить устройство.
Для определения номинала этого резистора RD необходимо знать: какое питание будет подаваться на вход (V), падение напряжение на внутреннем светодиоде (VF) и прямой ток (IF) для максимального открытия транзистора на выходе оптопары.
Во время расчета резистора для оптопары pc817 используют формулу согласно закона Ома RD=(V-VF)/IF. Значения параметров берут из даташит: типовое VF=1,2 В, рекомендуемый в столбце «условия измерений» прямой ток IF = 20 А (0,02 А). Например, для напряжения питания 5 В на входе RD=(5-1,2)/0,02 = 190 Ом.
Стабилитроны, шлейфы/разъемы
Для тестирования стабилитрона понадобится блок питания, резистор и мультиметр. Соединяем резистор с анодом стабилитрона, через блок питания подаем напряжение на резистор и катод стабилитрона, плавно поднимая его.
На дисплее мультиметра, подключенного к выводам стабилитрона, мы можем наблюдать плавный рост уровня напряжение. В определенный момент напряжение перестает расти, независимо от того, увеличиваем ли мы его блоком питания. Такой стабилитрон считается исправным.
Для проверки шлейфов необходимо прозвонить контакты мультиметром. Каждый контакт с одной стороны должен звониться с контактом с другой стороны в режиме «прозвонки». В случае если один и тот же контакт звонится сразу с несколькими – в шлейфе/разъеме короткое замыкание. Если не звонится ни с одним – обрыв.
Иногда неисправность элементов можно определить визуально. Для этого придется внимательно осмотреть микросхему под лупой. Наличие трещин, потемнений, нарушений контактов может говорить о поломке.
Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.
Как проверить двусторонний стабилитрон
Бывает, что после выпаивания из платы полупроводникового элемента, при изменении полярности на щупах, сопротивление оказывается большим в обоих случаях. Это не обязательно говорит об обрыве. Проверяемый компонент схемы может быть двусторонним стабилитроном. Как проверить стабилитрон мультиметром?
Чтобы протестировать его работоспособность, нужно:
- увеличить прилагаемое напряжение измерения;
- менять полярность, подаваемую щупами тестера на выводы;
- измерять токи и сравнивать ВАХ исследуемой детали.
Совокупность действий поможет определить, исправен или нет такой зенер диод. Зная о том, что в такой радиодетали катоды внутри соединены между собой, необходимо собрать схему.
В схему входят следующие компоненты:
- тестер;
- резистор сопротивлением 1 кОм (R);
- ИП до 30 вольт.
Для измерения все вместе соединяется в схему:
- подключают резистор к « + » источника питания;
- стабилитрон присоединяют на второй контакт резистора;
- щуп тестера подсоединяют с свободному выводу R и клемме « – » ИП;
- прибор включается в разрыв: « + » ИП и « – » ИП;
- на приборе выбирается наиболее подходящий режим.
При проверке зинер диода с напряжением стабилизации схема будет рабочей, если, изменяя Uпит в границах 13-30 В, на дисплее прибора сохраняется в пределах 12 В, даже при смене полярности.
Важно! Никакой измерительный прибор не может гарантировать, что полученные результаты действительно верны. Для проверки нужно включить в схему полупроводник, подать питание и провести измерения, которые выявляют неисправную деталь
тестер оптопар
На многих форумах можно прочитать, что раз деталь такая дешевая, то и проверять её не стоит, а просто меняем и все. У меня против этого мнения следующие доводы: все равно нужно узнать сгорела оптопара или нет, потому что это поможет понять, что ещё могло сгореть, да и новый оптрон может оказаться бракованным. Проверить оптопару можно прозвонив тестером светодиод и проверить на короткое замыкание транзистор, потом пропустить через светодиод ток и посмотреть, что транзистор открылся.
Но проще всего соорудить простейший тестер оптопар, для него понадобятся только:
- Два светодиода,
- Две кнопки,
- Два резистора.
Светодиоды подойдут на ток 5-20 мА и напряжение около 2-х вольт, R1, R2 — 300 Ом.
Питается тестер от USB порта получая от него 5 В, но можно питать тестер и от 3-х или 4-х батареек AA. Можно питать и от батарейки 9 В или 12 В или источника питания, вот только тогда нужно будет пересчитать сопротивления резисторов R1, R2.
42 thoughts on “ Оптрон PC817 схема включения, характеристики ”
Параметры и особенности работы устройства
Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами: 1. DIP; 2. SOP; 3. SSOP; 4. Miniflat-lead.
В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:
- Световой диод и оптический регистратор;
- Внутренняя и внешняя сторона корпуса.
В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше. Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.
Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц
Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:
- Проходная ёмкость между световым диодом и транзисторной базой;
- Паразитная ёмкость между коллектором и фототранзисторной базой.
Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.
Датчик скорости с оптопарой.
Оптореле
Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.
Два простых способа проверки симистора
Классификация видов оптореле
Для оптореле определено три типа топологий:
- Нормально разомкнутые.Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Нормально замкнутые.Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Переключающая.Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.
Оптореле подобно оптопаре имеет характеристику по электрической прочности.
Разновидности оптореле
- Модели стандартного типа;
- Модели, имеющие малое сопротивление;
- Модели, имеющие малое СxR;
- Модели, имеющие малое напряжение смещения;
- Модели, имеющие высокое напряжение изоляции.
Проверка оптрона
Как можно проверить оптрон? Например так, как на следующей схеме:
Схема проверки оптрона
В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:
Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:
Устройство для проверки оптопары с интернета
Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод :-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию :-).
Звуковой пробник — схема
У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.
Простой звуковой пробник
Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.
Внутренности и детали
Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.
Контактные пластины из текстолита
Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.
Цоколевка
Распиновку у РС817 определить несложно. Он изготавливается в четырехконтактном DIP-корпусе (DIP-4). Встречается как для поверхностного, так и для дырочного монтажа. Один из контактов отмечен вдавленной точкой, которая указывает на анод внутреннего светодиода. Ножки нумеруются против часовой стрелки. Следующим по счёту является катод. Третий и четвертый выводы соответственно: эмиттер и коллектор фототранзистора.
Последние версии устройства прошли успешное тестирование на соответствие международному стандарту безопасности UL1577 и классу воспламеняемости упаковки 94V-0
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например
Обратите внимание на 10Ком резистор, который включается в базу транзистора
Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов
Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания
Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.
Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
Основные неисправности стабилитрона
Работоспособность детали, расположенной в блоках аппаратуры, можно выявить, зная основные неисправности. К ним можно отнести следующие повреждения или отклонения от нормы:
- пробой перехода;
- обрыв;
- неправильное напряжение;
- неточный ток.
Если первые два пункта вопросов не вызывают, то вторые две позиции относятся к неявным повреждениям.
Внимание! Когда измеренное мультиметром на диоде зенера падение напряжения в прямом направлении совпадает с заявленным значением, это означает, что элемент исправен. При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду
В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1»
При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду. В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1».
При пробое перехода при прямом и обратном прикасании измерительных щупов на дисплее тестера будут высвечиваться цифры. Когда в режиме проверки диода на тестере присутствует звуковое оповещение (пищалка), то оно сработает.
При обрыве перехода измерения ничего не покажут при любом прикладывании щупов тестера. В этом случае даже без выпаивания стабилитрона из платы можно определить его неисправность.
Неправильное напряжение стабилизации определяется только при включении питания схемы. В режиме вольтметра щупами касаются выводов детали и измеряют параметр. В случае отклонения от необходимой величины стабилитрон заменяется.
При определении исправности элемента с напряжением стабилизации до 20-30 В пользуются простым методом. Для этого нужно собрать небольшую макетную модель для испытаний, в неё входят:
- панель для закрепления микросхем (любая);
- ограничивающий резистор сопротивлением 4,7 кОм, мощностью до 0,25 Вт;
- источник питания: подойдёт блок питания от ноутбука, в идеале – источник с регулировкой выходного напряжения.
Панель от микросхемы поможет закреплять в её пазах любой проверяемый элемент.
Осторожно. При подключении в схему проверяемого полупроводника подключают «плюс» к катоду, «минус» – к аноду
Неправильное включение выведет испытуемую деталь из строя.
Схема для проверки напряжения стабилизации
Стабилизация напряжения с использованием стабилитронов – успешное решение в электронных схемах. Правильное тестирование стабилитрона с помощью мультиметра поможет определить неисправную деталь и сберечь схему от повреждения.
Простой пробник оптронов
Потребовался простой способ проверки оптронов. Не часто я с ними «общаюсь», но бывают моменты, когда надо определить — виноват ли оптрон?.. Для этих целей сделал очень простой пробник. «Конструкция выходного часа». Внешний вид пробника:
Схема данного пробника очень проста:
Теория:
Оптроны(оптопары) стоят практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи. В составе оптрона находятся обычный светодиод и фототранзистор. Упрощенно говоря, это, своего рода, маломощное электронное реле, с контактами на замыкание.
Принцип работы оптрона: Когда через встроенный светодиод проходит электрический ток, светодиод (в оптроне) начинает светиться, свет попадает на встроенный фототранзистор и открывает его.
Оптроны часто выпускается в корпусе Dip Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.
Суть проверки: Фототранзистор, при попадании на него света от внутреннего светодиода, переходит в открытое состояние, а сопротивление его — резко уменьшится (с очень большого сопротивления, до примерно 30-50 Ом.).
Практика:
Единственным минусом данного пробника является то, что для проверки необходимо выпаять оптрон и установить в держатель согласно ключу(у меня роль напоминалки является кнопка тестирования — она смещена в сторону, и ключ оптрона должен смотреть на кнопку). Далее, при нажатии кнопки, (если оптрон цел), оба светодиода загорятся: Правый будет сигнализировать о том, что светодиод оптрона рабочий(цепь не разорвана), а левый сигнализировать о работоспособности фототранзистора(цепь не разорвана).
(Держатель у меня был только DIP-6 и пришлось залить неиспользуемые контакты термоклеем.)
Для окончательного тестирования, необходимо перевернуть оптрон «не по ключу» и проверить уже в таком виде — оба светодиода не должны гореть. Если же горят оба или один из них, то это говорит нам о коротком замыкании в оптроне.
Рекомендую такой пробник в качестве первого, для начинающих радиолюбителей, которым необходимо проверять оптроны раз в полгода, год) Существуют и более современные схемы с логикой и сигнализацией о «выходе из параметров», но такие нужны для очень узкого круга людей.
Ссылки на детали для самостоятельной сборки
Советую посмотреть у себя в «закромах», так выйдет дешевле, да и время на ожидание доставки не потратите. Можно выпаять из плат. Монтажная плата двухсторонняя Держатель батареи Тактовая кнопка Держатель DIP-6 Светодиоды
Комментарии:
Как выбирать токоизмерительные клещи и не переплатить Виды мультиметров Mastech и сфера применения
Светодиод – полупроводниковый прибор, по своей структуре напоминающий обычный диод. Поэтому проверить его можно как обычный диод — включением в прямом направлении, т.е. между анодом и катодом приложить положительное напряжение. Проверка не составит труда, если есть на руках обычный тестер. В отличие от обычных кремниевых диодов, прямое напряжение на которых составляет 0,6…0,7 В, светодиод имеет гораздо большее значение этого параметра. В зависимости от цвета и материала, красные имеют напряжение – 1,5…2 В, зеленые – 1,9…4 В, белые – около 3…3,5 В. Эта информация указана в документации производителя.
Еще одной особенностью светоизлучающего диода от обычного – низкое обратное напряжение, которое превышает прямое всего на несколько вольт. Это повышает риск выхода прибора из строя при неправильном включении или вследствие электростатического разряда. Как убедиться в исправности светодиода, прежде чем смонтировать его на плату?
Практически любой цифровой тестер (или мультиметр, кому как больше нравится) позволяет быстро проверить светодиод на работоспособность.
В простейшем случае, чтобы прозвонить светодиод, нужно включить мультиметр в режим проверки диодов, как показано на рисунке ниже.
Далее определим полярность включения. У выводных светодиодов катод обычно короче анода. Если выводы одинаковой длины (кто-то «заботливо» обкусил), то смотрим на просвет. На рисунке видно, что внутри самого корпуса располагаются два электрода, обычно тот который большего размера – катод, но это не всегда так, поэтому не стоит брать это за правило.
Остается только подключить тестер к выводам светодиода. Красный щуп к аноду, черный – к катоду (если, конечно, у вас стандартные цвета щупов). Исправность определяется по свечению.
Этим же способом можно проверить и мощный светодиод. Такие обычно смонтированы на плату с металлической подложкой (MCPCB). Полярность обычно подписана рядом с контактными площадками. Если нет, тогда наугад. Вероятность повредить светодиод тестером очень мала – не та мощность.
Еще проще и удобнее прозвонить выводные светодиоды, если в мультиметре есть функция проверки транзисторов. В этом случае нужно всего лишь вставить в соответствующий разъем выводы. Для секции NPN: анод в отверстие С (коллектор), катод в E (эмиттер). Для секции PNP – с точностью до наоборот. Наглядно проверка показана на рисунке ниже.
Когда дело касается мощных осветительных светодиодов, работающих на токах порядка сотен и тысяч мА, то встречается такой дефект: при «прозвонке» светодиод подсвечивается и признается годным, а когда включается на рабочий ток, то светит словно «в полнакала». Это связано с дефектом кристалла и если замена бракованных светодиодов в готовом изделии (например, прожекторе) затруднена, то необходимо проверить их заранее.
Более тщательная проверка, помимо мультиметра, потребует еще и источника тока. Идеальный вариант – наличие лабораторного источника, но подойдет и адаптер для зарядки мобильных телефонов или других устройств. Главное, чтобы он имел стабилизацию по току.
Последовательность такова:
- мультиметр переключаем на предел «10 А» (не забываем переставить щуп в соответствующее гнездо) и включаем в цепь последовательно между светодиодом и источником питания;
- включаем питание, измеряем силу тока, выключаем питание;
- мультиметр включаем параллельно светодиоду, установив предел измерения «20 В» (опять же не забывая переставить щуп, а то устроим КЗ), источник соединяем напрямую со светодиодом, соблюдая полярность;
- включаем питание, измеряем падение напряжения на светодиоде, выключаем питание;
- проверяем исправность по соответствию тока и напряжения по кривой вольтамперной характеристики, приведенной производителем в data sheet.
Несмотря на то, что светодиодные источники света отличаются гораздо большим сроком службы, чем большинство аналогов, они тоже выходят из строя. Причиной этого может быть и повреждение, и выработка ресурса. Простой и действенный способ убедиться в неисправности – проверить светодиод тестером в режиме «прозвона». Кроме того, исправность светодиода необходимо проверять перед его монтажом на плату.