Материалы для фотолитографии и фоторезисты

Содержание

Проявление фоторезиста

Но отказался от них, поскольку приходиться работать в перчатках (раствор опасен и разъедает кожу). Процесс протекает очень быстро. К тому же, совсем неприемлемо держать такой раствор в доме, где есть жена и маленькие дети, которые могут найти эту опасную жидкость.

Поэтому, берем простую пищевую соду. Пищевая сода не только безопасный химикат, который легко купить в продуктовом магазине, но и работать с ней гораздо приятнее. Она не так быстро растворяет пленку фоторезиста, поэтому сложно передержать фоторезист в растворе. Вымывание незасвеченных  участков фоторезиста проходит более деликатно и не так стремительно. Дело в том, что удаление пленки фоторезиста с готовой платы выполняется в том же растворе, поэтому если передержать, то фоторезист начнет отставать от текстолита.

Раствор готовим по следующему рецепту: насыпаем в бутылку пищевой соды, сколько не жалко, заливаем горячей водой, растворяем путем применения к бутылке возвратно поступательных движений, т.е. колотим

Внимание! Если вы будете использовать едкий натрий( NaOH) его концентрация не должна быть столь суровой. Достаточно чайной ложки на литр

Далее наливаем раствор в кюветку или мелкую посудину. Отделяем с пленки фоторезиста верхнюю защитную пленку (она более жесткая, чем первая, ее можно отделить руками), погружаем заготовку в раствор. Через 3 минуты вынимаем, и под струей теплой воды протираем мягкой губкой для мытья посуды. Затем снова в раствор на 2-3 минуты. И так пока фоторезист полностью не смоется с незасвеченных участков. Затем хорошо промываем заготовку в проточной воде.

Типы

Исходя из химической структуры фоторезистов, их можно разделить на три типа: фотополимерные, фоторазлагаемые, фоторезисты фотошивки.

Фотополимерный фоторезист — это тип фоторезиста, обычно аллильного мономера, который может генерировать свободные радикалы при воздействии света, а затем инициирует фотополимеризацию мономера с образованием полимера. Фотополимерные фоторезисты обычно используются для негативного фоторезиста, например, метилметакрилата.

Фотополимеризация мономеров метилметакрилата в УФ-диапазоне с образованием полимера.

Фоторезист фоторазложения — это тип фоторезиста, который создает гидрофильные продукты под действием света. Фоторезисты фоторазложения обычно используются для позитивных фоторезистов. Типичным примером является азидхинон, например диазонафтахинон (DQ).


Фотолиз дизаонафтохинона, который приводит к гораздо более полярной среде, которая позволяет водной основе растворять полимер бакелитового типа.

Фотосшивающий фоторезист — это тип фоторезиста, который может сшивать цепочку за цепочкой при воздействии света с образованием нерастворимой сети. Фотосшивающий фоторезист обычно используется для негативного фоторезиста.

Химическая структура СУ-8 (одна молекула содержит 8 эпоксидных групп)

Механизм СУ-8 для негативного фоторезиста

Полимеры тиол-енов (OSTE) вне стехиометрии

Для самоорганизующегося однослойного фоторезиста SAM сначала формируется SAM на подложке путем самосборки . Затем эта поверхность, покрытая SAM, облучается через маску, аналогичную другим фоторезистам, которая формирует образец с фото-рисунком на облучаемых областях. И, наконец, проявитель используется для удаления разработанной детали (может использоваться как положительный, так и отрицательный фоторезист).

Проявление фоторезиста

Пришел этап проявления фоторезиста. Для этого примерно чайную ложку кальцинированной соды разводим в литре воды и хорошенько размешиваем. И теперь кладем в эту ванну наш засвеченный бутерброт.

В процессе проявки следует периодически вытаскивать плату из раствора и промывать в холодной проточной воде.  При этом ситуацию нужно держать под контролем. Нужно дождаться момента когда защищенные элементы  (элементы которые были закрыты фотошаблоном ) окончательно растворятся в растворе но при этом засвеченные участки будут четкими и контрастными. Таким образом мы находим элемент который нас больше всего  устраивает. А так как мы знаем сколько времени светился каждый элемент то без труда определяем требуемую дозу облучения.

Для чистоты эксперимента стоит эту процедуру повторить еще раз и убедиться в повторяемости результата.

После проведения всей этой процедуры я выяснил, что в моем случае  время засветки должно составлять 4 минуты. Честно сказать были некоторые огрехи при наложении  фотошаблона. Когда фотошаблон распечатал он оказался на удивление длинным (простирался по всей длине листа А4). Это я потом обнаружил что рисунок распечатался в масштабе 212%.  При наложении пришлось ограничиться 5-ю элементами из линейки фотошаблона так как прижимное стекло не могло охватить всей прощади.

Хотя фото получилось не очень качественное но по изображению можно заметить, что элементы под номером 1 и 2 более блеклые чем элементы под номерами 3 и 4. Время засветки элементов 3 и 4 соответствует 4 и 5 минут соответственно. Да, как видите, я  перемещал заслонку через каждую минуту, всему виной неправильный масштаб.

Накатка фоторезиста

Вырезаем нужный кусок по размеры (делайте минимум на 1см больше с каждого края, чем надо). С одного края отдираем пленку с одной стороны (он покрыт пленкой с двух сторон), прилепляем этот край к плате, аккуратно разглаживая пальцами. Далее два варианта. Или плавно отдирая снизу фоторезиста пленку (не касаясь платы!) лепим его пальцами другой руки и разглаживаем. Для маленьких плат получается хорошо. Но я предпочитаю другой вариант. Прикрепили край, а теперь ставим на него валик, и катим вперед и давим вниз, а другой рукой по необходимости тянем снимаемую пленку из-под фоторезиста. С валиком у меня с первого раза получилось без единого пузыря. И далее пузырей не случалось (сделано на момент написания этого текста более 20 плат фотоспособом). После этого, сильно надавливая, прокатайте фоторезист во всех направлениях. Ну, скажем, в 4-х направлениях (крест и диагонали) по 3 раза от края до края.

Кстати, работайте при обычном свете, ничего не бойтесь, кроме сильного прямого солнечного света.

Теперь берем утюг, ставим на 1 (одну) точку. Кладем на плату бумагу 80г/м2 и, когда прогреется, утюгом водим по плате пока она не станет заметно теплой. Нельзя чтобы фоторезист или верхняя пленка на нем начала плавится. Просто он должен быть теплым. Градусов на 50. После этого сразу еще раз прокатываем все валиком, как и в предыдущий раз. Все, плата готова.

Вообще, из всех моих опытов стало очевидно, что для того, чтобы фоторезист не отходил, надо чтобы плата была идеально обезжирена, а фоторезист был очень равномерно прикатан, причем надо это сделать на теплый текстолит. Я даже сначала текстолит утюгом грел и прикатывал сразу пока он очень теплый. Это оказалось перебором. Описанный способ ни одного раза не позволил отойти фоторезисту.

Результат

Вот ссылка на скан 3200 dpi (126 пикселей на 1 мм) платы с фоторезистом: скан 1.5Mb

Стабильно и без напрягов этим способом выходят дорожки от 0.15 и зазоры от 0.20. Мой ЛУТ способ дает такой же результат. Так в чем же преимущества? Их несколько:

  • для действительно больших плат (больше 10х15 см) ЛУТ тяжеловат в применении
  • меньше зазубрин на дорожках
  • проще сделать размеры на плате такими же, какие они на фотошаблоне

Но ЛУТ дает больше точности на мелких деталях, как это не странно. Фотоспособ любит «съедать» мелкие штучки, а ЛУТ, наоборот, делает их пожирнее. Фотоспособ на самом деле немного муторнее, чем ЛУТ И список оборудования подлиннее, а так как у меня нет больших плат, то я, пока, с ЛУТом.

Подготовка и очистка текстолита

Химическую очистку медного покрытия перед наклейкой фоторезиста будем проводить с применением бытовой химии. Очищаем поверхность текстолита средством для борьбы с накипью «Cillit». В его состав входит ортофосфорная кислота, именно она убирает все загрязнения. Поэтому, пальцы в эту жидкость не суем. Если нет подходящей посудины, можно положить текстолит на дно ванной и просто полить этой жидкостью. Через 2 минуты (передерживать не стоит) хорошенько промываем проточной водой. На поверхности не должно быть пятен. В противном случае следует повторить операцию. Остатки воды удаляем бумажной салфеткой. Стараемся не доводить салфетку до состояния, когда из нее полезет бумажная ворса. Именно из-за ворсы я не применяю тканевых салфеток. Если на поверхности меди останутся даже мельчайшие ниточки, пленка фоторезиста в этом месте ляжет с пузырьком. Сушим текстолит утюгом через бумагу. Поверхность текстолита пальцами не трогать!

В некоторых источникам можно найти рекомендацию обезжиривать поверхность спиртом. Лично у меня при очистке спиртом результат был значительно хуже. Фоторезист не везде приклеивался нормально. После «Cillit» результат всегда на много лучше.

Травление

Раствор:

Посуда: Идеальная посуда для травления — это специальная емкость с подогревом и системой циркуляции раствора. Такое устройство можно изготовить самому. Подогрев можно сделать от проточной горячей воды или электрический. Для организации циркуляции раствора можно применить аквариумные технологии. Но эта тема выходит за пределы этой статьи.  Нам же придется использовать бытовые средства. Поэтому, берем подходящую емкость. В моем случае — это капроновая прозрачная посудина с плотно закрывающейся крышкой. Хотя крышка и не обязательна, она упрощает процесс травления, да и раствор можно хранить прямо в посуде для травления.

Процесс: Из опыта знаем, что процесс травления проходит быстрее, если раствор подогревать и перемешивать. В нашем случае, нашу емкость ставим в ванну под струю горячей воды и периодически потряхиваем ее для перемешивания раствора. Персульфат натрия раствор прозрачный, поэтому визуально контролировать процесс не представляется никакой сложности. Если раствор не перемешивать, то травление может быть не равномерным. Если раствор не подогревать, процесс травления будет протекать долго.

По завершению промываем плату в проточной воде. После травления плату сверлим, обрезаем по размеру.

Подготовка платы

Если плата грязная и сильно окислилась, то полируем плату пастой гои, чтобы блестела. До идеального зеркала не надо.

Надеваем гигиенические перчатки (тонкие такие, чтобы движениям не мешали). Драим Кометом с тряпочкой — снимает все окислы. Хорошо промываем горячей водой (холодной вообще лучше не пользоваться, в ней хлор, он нам не друг). Драим Пемолюксом, без тряпочки, просто пальцами, смываем. С этого момента руками поверхность не трогаем. На жир фоторезист не ложится. Плата настолько обезжирена после Пемолюкса, что скрепит. Вода с платы не скатывается, пристает к поверхности. На вид должна быть блестящая, светлая. Сушим феном на самой маленькой температуре, сгоняя воду.

Плата готова.

Требования к печатным платам, материалы для их изготовления, классы точности по ГОСТ.

Печатная плата (printing circuit board, PCB) — изделие, предназначенное для размещения и электрического соединения между собой электронных компонентов и функциональных узлов. Печатная плата состоит из основания с отверстиями или без них и проводящего рисунка (тонких проводников). Дополнительно могут выполняться пазы и вырезы.

Правильный выбор материалов, технологических процессов и элементной базы при разработке современных печатных узлов во многом определяет уровень работоспособности и надежность электронного устройства. От этого же зависит и рациональность экономических затратах в производстве.

Платы делятся на односторонние, двусторонние и многослойные. Разновидностями многослойных плат являются попарно-двухслойные и платы со скрытыми отверстиями. Платы также можно разделить по другому признаку — на жесткие, гибкие и гибко-жесткие.

Все методы изготовления плат можно расположить в следующий ряд возрастания плотности печатного монтажа:

• односторонние печатные платы (ОПП);

• двусторонние печатные платы (ДПП) комбинированным позитивным методом и тентинг методом;

• многослойные печатные платы (МПП), изготовленные методом металлизации сквозных отверстий.

Основные требования к печатным платам сформулированы:

(Требования к многослойным печатным платам «PERFAG 3С».)

Выделяют следующие группы требований к печатным платам:

• Геометрические размеры элементов топологии и точности их исполнения;

• Электрические параметры;

• Механические свойства (прочность и хрупкость платы, устойчивость к скручиванию, износостойкость контактов, адгезия проводящего слоя и маски;

• Тепловые параметры (термостойкость, разогрев при эксплуатации и теплопроводность, коэффициент термического расширения (КТР));

• Коррозионная стойкость (влагостойкость, стойкость в определенных средах).

Основными элементами топологии поверхности печатной платы являются (рисунок 1):

• t — ширина проводников;

• S — зазор между элементами рисунка;

• D — диаметр контактной площадки;

• d — диаметр отверстий;

• b — гарантированный поясок.

Рисунок 1 — Схема расположения основных элементов топологии поверхности печатной платы.

Параметр

Номинальное значение параметра для определенного класса точности по ГОСТ 23751-86

Класс точности

1

2

3

4

5

t, мм

0.75

0.45

0.25

0.15

0.1

S, мм

0.75

0.45

0.25

0.15

0.1

b, мм

0.3

0.2

0.1

0.05

0.025

f*

0.4

0.4

0.33

0.25

0.2

По ГОСТ 23751-86 важно, чтобы проводники во внешних слоях выдерживали 250А/мм2 течение 3х секунд, во внутренних — 100А/мм2 в течение 3х секунд. При токе 3А проводник шириной 1000 мкм и толщиной 35 мкм перегревается на 20 оС

при естественной конвекции.

Засветка

Я засвечиваю лампой 26Вт black-light с расстояния 12 см, 15 минут. Для этого сделал такое вот устройство:

Внимание! Это старые фото! В итоге я убрал отражатель из фольги и засветки проводу без отражателя!

Лампу включаю заранее за 1-2 минуту до засветки, чтобы прогрелась, но мне кажется, что при 15 минутах засветки это неважно. Кладем плату, сверху на нее фотошаблон, прижимаем или стеклом или пакетом с водой, и сверху ставим аппарат засветки

Ждем 15 минут ничего не двигая! Даже после 10 секунд уже двигать поздно!

Кладем плату, сверху на нее фотошаблон, прижимаем или стеклом или пакетом с водой, и сверху ставим аппарат засветки. Ждем 15 минут ничего не двигая! Даже после 10 секунд уже двигать поздно!

Хитрости тут две:

  1. Я на фоторезист (т.е на верхнюю пленку на нем) капаю немного воды, кладу фотошаблон тонером вниз и прикатываю его к фоторезисту. С водой он так прилипает, что кажется и прижимать не надо. Но я так не рисковал. Думаю, что если у вас дорожки и зазоры от 0.4-0.5мм, то действительно можно не прижимать
  2. Пакет с водой ничуть не хуже стекла, а для неровного текстолита просто спасение. Берем пакет, наливаем в него теплой воды из-под крана на половину. Теперь ставим его на пол, а верх пакета кладем на что-то не очень высокое, но так, чтобы вода не выливалась. Например, на коробку из-под обуви. Разумеется, верхний край пакета держать надо постоянно. После этого через бумагу утюгом на 3 (трех) точках проглаживаем верхние 5-10 сантиметров пакета, чтобы все хорошо слиплось. Пакет, однако, долго не живет. По крайне мере мои пакеты после 30 минут засветки УФ начинают протекать без видимых причин. Видать, они разлагаются под действием ультрафиолета.

Как альтернативный вариант, я могу перевернуть аппарат засветки, положить на него сверху стекло, а не стекло плату с фоторезистом и фотошаблоном, который держится на воде, а сверху небольшой груз. Иногда так удобнее.

Кстати, именно печать на лазерном принтере позволяет использовать воду для приклеивания шаблона водой. Струнный шаблон будет размазываться.

После того, как пойдет 15 минут, снимите шаблон, положите плату в темное место на 10 минут. Мне действительно кажется, чтобы если дать фоторезисту плате «дойти» после засветки, то он лучше держится и меньше растворяется, где не надо. Это субъективно, замеров не делал.

Приложения

Микроконтактная печать

Микроконтактная печать была описана Whitesides Group в 1993 году. Обычно в этой технике эластомерный штамп используется для создания двумерных узоров путем печати молекул «чернил» на поверхности твердой подложки.

Создание мастера PDMS

rightInking и контактный процесс

Шаг 1 для микроконтактной печати. Схема создания мастер-штампа из полидиметилсилоксана ( ПДМС ). Шаг 2 для микроконтактной печати. ​​Схема красочного и контактного процесса микропечати .

Печатные платы

Производство печатных плат — одно из важнейших применений фоторезиста. Фотолитография позволяет быстро, экономично и точно воспроизвести сложную разводку электронной системы, как если бы она вышла из печатного станка. Общий процесс заключается в нанесении фоторезиста, воздействии на изображение ультрафиолетовых лучей и последующем травлении для удаления покрытой медью подложки.

Печатная плата-4276

Рисунок и травление подложек

Это включает в себя специальные фотоники материалы, MicroElectro-механических систем ( MEMS ), печатных плат печатных стекла и другие micropatterning задачи. Фоторезист обычно не травится растворами с pH выше 3.

Микро-электромеханический кантилевер, полученный методом фототравления.

Микроэлектроника

Это приложение, которое в основном применяется к кремниевым пластинам / кремниевым интегральным схемам, является наиболее развитой из технологий и наиболее специализированной в данной области.

12-дюймовые кремниевая пластина может нести сотни или тысячи интегральных схем кости

Подготовка фотошаблона

Шаблон на пленке для струйного принтера более плотный, лазерный принтер в этом плане похуже — видны просветы на затемненных участках

При засветке нужно будет обратить внимание на то, какого типа фотошаблон будет применяться и сделать поправку времени засветки. Пленку для лазерного принтера найти не проблема, цена более чем доступна

Для струйного принтера приходится поискать, да и стоит она примерно в 5 раз дороже. Но при мелкосерийном производстве, применение фотошаблона распечатанного на струйном принтере полностью себя оправдывает. Фотошаблон должен быть негативным, т.е. те места, где должна остаться медь, должны быть прозрачными. Фотошаблон надо распечатать в зеркальном отображении. Это делается для того,  чтобы приложив, его к текстолиту с фоторезистом, краска на пленке фотошаблона прилегала к фоторезисту. Это обеспечит более четкий рисунок.

Проецирование

Кладем нашу заготовку, сверху фотошаблон и прижимаем оргстеклом (крышкой от коробки CD-диска). Можно, конечно использовать и обычное стекло. Со школьного курса помним, что обычное стекло плохо пропускает ультрафиолетовые лучи, поэтому придется дольше засвечивать. Под обычным стеклом мне пришлось увеличить выдержку в 2 раза. Расстояние от лампы до заготовки можно подобрать экспериментально. В данном случае — примерно 7-10 см. Разумеется, если плата большая, придется применять батарею из ламп или увеличить расстояние от лампы до заготовки и увеличить время засветки. Время засветки для фоторезиста  — 60…90 секунд. При использовании фотошаблона, распечатанного на лазерном принтере выдержку стоит сократить до 60 секунд. Иначе, из-за невысокой плотности тонера на фотошаблоне,  могут засветиться закрытые участки. Что приведет к сложностям при проявлении фоторезиста.

Определения

Положительный фоторезист

Пример положительного фоторезиста, растворимость которого будет изменяться под действием фотогенерированной кислоты. Кислота снимает защиту с трет- бутоксикарбонила (t-BOC), переводя резист из нерастворимого в щелочи в растворимый в щелочи. Это был первый резист с химическим усилением, используемый в полупроводниковой промышленности, который был изобретен Ито, Уилсоном и Фреше в 1982 году.

Пример однокомпонентного позитивного фоторезиста

Позитивный фоторезист представляет собой тип фоторезиста , в котором часть фоторезиста, которая подвергается воздействию света становится растворимым разработчиком фоторезиста. Неэкспонированная часть фоторезиста остается нерастворимой для проявителя фоторезиста.

Негативный фоторезист

Негативный фоторезист представляет собой тип фоторезиста , в котором часть фоторезиста, которая подвергается воздействию света становится нерастворимой для проявителя фоторезиста. Неэкспонированная часть фоторезиста растворяется проявителем фоторезиста.

Сшивание полиизопренового каучука фотореактивным биазидом в качестве негативного фоторезиста

Радикальная полимеризация и сшивание акрилатного мономера в качестве негативного фоторезиста

Различия между положительным и отрицательным сопротивлением

Следующая таблица основана на обобщениях, которые являются общепринятыми в отрасли производства микроэлектромеханических систем (МЭМС) .

Характерная черта Положительный Отрицательный
Адгезия к кремнию Справедливая Отлично
Относительная стоимость Более дорогой Менее дорогой
База разработчиков Водный Органический
Растворимость в проявителе Открытая область растворима Открытая область нерастворима
Минимальная функция 0,5 мкм 2 мкм
Покрытие ступеней Лучше Ниже
Влажная химическая стойкость Справедливая Отлично

Засветка на принтере

Сразу хочу предупредить: смотреть прямо в светящийся дисплей фотополимерного принтера может быть не очень полезным для глаз. Хоть там и не настоящий УФ (405 нм), но яркость довольно ощутима и может оказать вредное воздействие на глаза. Поэтому рекомендую использовать цветные или затемненные защитные очки. Полагаю, что даже солнцезащитные подойдут.

Для начала, с принтера необходимо снять ванну и платформу, они для этого дела совершенно не нужны и даже мешают. На этом подготовка принтера заканчивается 🙂

В засветке тоже есть разные варианты. Если у Вас односторонняя плата и заготовка больше необходимого для платы размера, то все просто — закидываете в принтер файл, полученный на этапе подготовки и, зная примерное место вывода изображения на дисплей, кладете на это место текстолит с фоторезистом. Затем запускаете печать файла и ждете пока она завершится. Все, фоторезист засвечен, можно проявлять.

Если заготовка по размерам равна изготавливаемой плате и ошибка с положением заготовки на дисплее недопустима, то в этом случае нужно при подготовке вывести и рамку, как в случае для двухсторонней платы. Засветка тоже происходит с использованием рамки, аналогично двухсторонней плате, только без второй стороны и второго слоя.

Итак, засветка двухсторонней платы. Закидываем в принтер все три файла — с рамкой, с первым слоем и со вторым слоем. Кладем рядом с принтером в быстрой доступности заготовку. Если она уже предварительно засверлена, то полезно будет убедиться, что она лежит в правильном положении, чтобы можно было ее быстро взять и сразу положить на дисплей. Для этого запускаем файл со слоем, планируемым к засветке, и сравниваем рисунок слоя на дисплее и ориентацию платы рядом с принтером.

Запускаем на печать файл с одной рамкой. Как только рамка засветилась на дисплее принтера, берем заготовку и кладем примерно внутрь рамки. Пока рамка засвечивается, выравниваем заготовку так, чтобы она была точно в рамке, с одинаковым отступом рамки от краев заготовки по всем сторонам.

На фото я привел пример с уже готовой платой, т.к. в процессе ее изготовления не фотографировал. Ну и отражения мешают довольно сильно, увы… Но думаю, понятно и так 🙂

Все, положение заготовки выверено, печать файла рамки можно прервать или дождаться ее окончания. Не сдвигая заготовку, запускаем файл с первым слоем и дожидаемся его окончания. Второй слой (вторую сторону) засвечиваем аналогично — запускаем рамку, кладем и выравниваем заготовку, не двигая ее запускаем второй слой. Перед этим на всякий случай можно удостовериться, что заготовка ляжет в правильной ориентации, как перед первым слоем.

Если заготовка не совсем ровная и не прилегает всей площадью к дисплею, то можно придавить ее сверху какой-нибудь тяжелой плоской железякой. Нужно только убедиться, что эта железяка не помешает рычагу платформы, который будет опускаться вниз с началом печати — принтер-то думает, что это обычная печать фотополимером и нужно опустить платформу к дну ванны 🙂

Время засветки может быть разным от принтера к принтеру. Это зависит и от мощности излучателя, и от оптической системы засветки, и от того какой тип дисплея стоит — монохромный или RGB. Тут уже надо подбирать каждому индивидуально. Для ориентировки могу сказать, что у меня наилучший результат с фоторезистом Ordyl получился на времени засветки около 90-110 секунд. С фоторезистом ПФ-ВЩ — около 10-13 минут. Принтер с параледом, мощность засветки чуть менее 50 ватт.

После засветки заготовке надо дать отлежаться минут 15 — это по рекомендации производителя фоторезиста. Ordyl довольно заметно меняет цвет засвеченных участков, так что довольно легко проконтролировать засветку. К сожалению, на фото это плохо передалось, глазами видно лучше.

Подготовка текстолита с фоторезистом

На эту тему интернет просто завален статьями, но ради целостности и ради некоторых специфических моментов я опишу и такие широко известные этапы как подготовка и травление текстолита.

Мой первый опыт такого изготовления был пару дней назад с отечественным фоторезистом ПФ-ВЩ. С учетом последнего вчерашнего опыта я категорически советую не тратить время на этот фоторезист, а сразу брать приличный — Ordyl Alpha 350(330) 🙂 Говорят, еще Kolon приличный, но его я не пробовал. С фоторезистом Ordyl результаты получаются гораздо более стабильные и точные, он проще проявляется и гораздо крепче держится на фольге. И он может простить те ошибки, которые будут критичными для ПФ-ВЩ

И что немаловажно — продается в куче мест довольно недорого

3.1 Подготовка текстолита

Начну с того, что текстолит должен быть ровным, очень желательно с гладкой фольгой без царапин и вмятин. Иначе шансы на успех снижаются.

Если изготавливается двухсторонняя плата, то нужно сразу вырезать из текстолита плату точно в размер. Если есть какой-нибудь CNC-фрезер, то можно за одну установку сразу и просверлить все отверстия и вырезать по контуру, как это делаю я. Если нет, то сверловку лучше оставить на потом, когда плата будет вытравлена.

После этого заготовку текстолита необходимо очень тщательно почистить и обезжирить. Это можно сделать кухонной абразивной губкой (но только не использованной для мытья посуды, на которой уже накопились жиры) и чистящим порошком наподобие Пемолюкса. Очень тщательно, не спеша трем каждый квадратный миллиметр фольги, не трогая ее пальцами. Вообще, фольгу после начала чистки трогать пальцами категорически не советую, на ней не должно быть ни малейшего даже самого слабого жирного пятнышка. После чистки тщательно промыть в проточной воде, стряхнуть излишки воды и дать ей высохнуть. Промакать или протирать чем-либо не советую, т.к. можно нанести жировые загрязнения, даже с новой салфетки.

3.2 Нанесение фоторезиста

Тоже довольно изъезженная в интернетах тема, поэтому пройдусь коротко.

Фоторезист обычно идет в листах или рулонах. Состоит он из трех слоев — две защитные пленки и сам фоторезист между ними. От фоторезиста отрезается кусочек по размеру платы +5 мм по длине и ширине, затем с него снимается матовая (полиэтиленовая) защитная пленка.

вторая, глянцевая (лавсановая) должна оставаться на нем вплоть до этапа травления.

Проще всего снять пленку с помощью кусочка скотча. Он клеится краем на уголок фоторезиста и затем отгибается назад, утягивая за собой и защитную пленку.

После снятия матовой пленки фоторезист прикладывается к краю платы и приглаживается по этому краю пальцем. Остальной фоторезист держится на весу, без натяга, но так, чтобы как можно меньшая его площадь ложилась на фольгу.

Учтите, что если фоторезист Ordyl упадет на хорошо подготовленный текстолит, то он может намертво приклеиться к нему, и без пузырей его уже не накатаешь. Придется отскребать его и повторять все заново. А ПФ-ВЩ может падать сколько угодно — он точно не приклеится 🙂

Теперь сама накатка. Если у Вас есть ламинатор, в который по толщине пролезет текстолит, то просто замечательно. Делаем из сложенной вдвое полоски бумаги типа конвертика, кладем текстолит с прилепленным краем фоторезиста в него, и подаем этот бутерброд в ламинатор, нагретый до 100-110 градусов. При этом продолжаем придерживать фоторезист, чтобы он соприкасался с фольгой текстолита только непосредственно на входе ламинатора.

Для Ordyl на этом все, для ПФ-ВЩ будет невредным прокатать еще пару раз.

Если ламинатора нет, то приглаживаем фоторезист к текстолиту пальцем от края до края, постепенно опуская его на текстолит. Главное — не поймать пузыри. После того как весь фоторезист лег на фольгу, берем фен и прогреваем текстолит градусов до 70, после чего еще раз хорошенько проглаживаем весь фоторезист.

После накатки даем текстолиту с фоторезистом отлежаться минут 15-20, или как минимум пока они не остынут до комнатной температуры — по рекомендации производителя фоторезиста.

И теперь все готово для засветки рисунка слоя 🙂

Параметры

Физические, химические и оптические свойства фоторезистов влияют на их выбор для различных процессов.

Разрешение — это способность различать соседние элементы на подложке. Критический размер (CD) — это основная мера разрешения.

Чем меньше критический размер, тем выше будет разрешение.

  • Контраст — это разница между экспонированной частью и неэкспонированной частью. Чем выше контраст, тем более очевидной будет разница между экспонированными и неэкспонированными частями.
  • Чувствительность — это минимальная энергия, которая требуется для создания четко выраженного элемента фоторезиста на подложке, измеряемая в мДж / см 2 . Чувствительность фоторезиста важна при использовании глубокого ультрафиолета (DUV) или экстремального ультрафиолета (EUV).
  • Вязкость — это мера внутреннего трения жидкости, влияющая на то, насколько легко она будет течь. Когда необходимо получить более толстый слой, предпочтительным будет фоторезист с более высокой вязкостью.
  • Адгезия — это сила адгезии между фоторезистом и подложкой. Если резист отключается от носителя, некоторые элементы будут отсутствовать или повреждены.
  • Защита от травления — это способность фоторезиста противостоять высокой температуре, среде с различным pH или ионной бомбардировке в процессе пост-модификации.
  • Поверхностное натяжение — это натяжение, вызываемое жидкостью, стремящейся минимизировать площадь ее поверхности, которое вызвано притяжением частиц в поверхностном слое. Для лучшего смачивания поверхности подложки требуется, чтобы фоторезисты обладали относительно низким поверхностным натяжением.

Положительный фоторезист

DNQ- Новолачный фоторезист

Один очень распространенный позитивный фоторезист, используемый с линиями I, G и H от ртутной лампы, основан на смеси диазонафтохинона (DNQ) и новолачной смолы (фенолформальдегидной смолы). DNQ ингибирует растворение новолачной смолы, но при воздействии света скорость растворения увеличивается даже по сравнению с чистым новолаком. Механизм, с помощью которого неэкспонированный DNQ ингибирует растворение новолака, не совсем понятен, но считается, что он связан с водородными связями (или, точнее, диазосвязью в неэкспонированной области). Резисты DNQ-новолачные получают путем растворения в основном растворе (обычно 0,26 н. Гидроксид тетраметиламмония (TMAH) в воде).