Простой генератор прямоугольных импульсов на логических элементах

Содержание

Генератор прямоугольных импульсов на NE555

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Генераторы импульсов с использованием индуктивной обратной связи

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 14 , 15 и 16.

Рис. 14. Генератор импульсов с использованием индуктивной обратной связи — схема.

Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Рис. 15. Схема блокинг-генератора на транзисторе.

Рис. 16. Схема блокинг-генератора на транзисторе КТ315 с минимумом деталей.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий: никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

ГЕНЕРАТОР ПАЧЕК ИМПУЛЬСОВ

Генератор пачек импульсов может быть реализован с помощью двух одинаковых микросхем генератора импульсов, при этом выход Pulses первой микросхемы соединяется с входом Run второй, а вход IdleState первой микросхемы заземляется (см. схему справа).

Включение и выключение генерации пачек импульсов осуществляется с помощью входа Run первой микросхемы, а состояние покоя при выключенной генерации – входом IdleState второй микросхемы.

Входы Ur / RX, M0 и M1 первой микросхемы определяют параметры пачек, а входы Ur / RX, M0 и M1 второй микросхемы – параметры импульсов внутри пачек. При этом, если необходимо, первая и вторая микросхемы могут работать в разных режимах (например, одна от потенциометра, а другая по настройкам Flash-памяти).

Возможное применение генераторов пачек импульсов: прерывистая звуковая сигнализация, прерывистая световая индикация с регулированием яркости и другое.

Мощный лабораторный генератор импульсов


Схема 1 Генератор был спроектирован для использования в нем минимального количества общедоступных электронных компонентов, с хорошей повторяемостью и достаточной надежностью. Вариант генератора (схема 1) собран на базе широко распространенного шим-контроллера UC3525 (U1), который управляет мостовой схемой на полевых транзисторах Q4-Q7. Если нижние ключи каждого из полумостов, работающих в противофазе, управляются непосредственно выходами микросхемы 11/14 U2, то в качестве драйверов верхнего плеча применены бустрепные каскады на транзисторах Q2, Q3. Такие каскады широко используются в большинстве современных микросхемных драйверов и достаточно хорошо описаны в литературе, посвященной силовой электронике. Входное напряжение переменное или постоянное (

Ламповый ВЧ генератор

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

Усилитель мощности на лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. накала с питанием низкого напряжения.
  2. возбуждения и питания сетки управления.
  3. питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Типы и классификация мультивибраторов

Электрическая принципиальная схема моностабильного транзисторного мультивибратора (
одновибратор а).

Электрическая принципиальная схема бистабильного мультивибратора (триггера).

Существуют три типа мультивибраторов в зависимости от режима работы:

  • нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое. При этом не обязателен внешний синхронизации, если не требуется захват частоты колебаний;
  • моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов, переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие
    мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или
    ждущие мультивибраторы .
  • бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключен из одного состояния в другое подачей внешних импульсов. Такие устройства называют бистабильными триггерами, и такие триггеры иногда, не совсем корректно, называют «мультивибраторы», так как двусмысленно.

Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор вырабатывает импульсы только тогда, когда на его вход поступают синхронизирующие сигналы.

Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удается синхронизовать частоту колебаний автоколебательного мультивибратора под частоту синхронизирующего сигнала или сделать кратной ей (режим «захвата частоты») для автоколебательных мультивибраторов.

Мультивибраторы
В мультивибраторе, работающем в режиме автоколебаний, на его выходе непрерывно возникают импульсы прямоугольной формы.
Любой мультивибратор, как импульсный генератор, состоит из усилителя и RC- цепей.
Симметричный мультивибратор
Длительность импульса tи и паузы tп равны.
Процесс зарядки конденсатора описывается дифференциальным уравнением:
Решение этого уравнения:
Если процесс зарядки конденсатора начинается в момент времени t2 и заканчивается в момент времени t3, то для данной схемы решение запишется так:
Пусть UC(tи)= β Uвых макс . Об этом говорит сайт https://intellect.icu . Прологарифмируем это выражение, то получим:
Если U+выхмакс = U-вых макс, то: tи = τ ∙ln(1+2 R1/ Roc)
если tи = tп, то мультивибратор симметричный в таком генераторе частота колебаний определяется по формуле, где период Т = tи + tп
несимметричный мультивибратор
Несимметричный мультивибратор – это генератор прямоугольных импульсов, у которых длительность импульса не равна длительности паузы, т.е. tи≠ tп.
tи =(R2+R3)•С• ln (1+2 R1/ Roc)
tп =(R2+R4)•C• ln (1+2 R1/ Roc),
причем R3 ≠ R4.Одновибратор
Мультивибратор, работающий в ждущем режиме, когда прямоугольный импульс на выходе появляется только тогда, когда на вход разрешения подается запускающий импульс.

Формирование ШИМ-сигнала

ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.

Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.

На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.

https://youtube.com/watch?v=80Fs9V6xF5I

Схема генератора ШИМ на ATtiny

Принцип работы схемы: после подачи питания на выходе генератора (разъем CON2) формируется прямоугольный сигнал с частотой 10 кГц, заполнением 50% и уровнем, зависящим от значения напряжения питания Vcc. Чтобы уменьшить / увеличить заполнение сигнала на 1%, кратко нажмите кнопку микрик S1 (-) / S2 (+) (длительность нажатия менее 250 мс). Нажатие и удерживание кнопки S1 / S2 в течение более длительного времени приведет к непрерывному уменьшению / увеличению значения заполнения со скоростью примерно 4% в секунду до тех пор, пока не будет достигнуто предельное значение, то есть 0% или 100%. Установка 0% / 100% заполнения вызовет непрерывную логику низкого / высокого уровня (GND / Vcc) на выходе генератора.

Чтобы изменить частоту сигнала ШИМ, нажмите одновременно кнопки S1 и S2 на короткое время (менее 1 секунды). Тогда частота будет меняться до следующего значения в таком порядке: 10/20/40/80/1,25/2,5/5 кГц по кругу. Одновременное нажатие и удерживание кнопок S1 и S2 будет непрерывно изменять значение частоты до тех пор, пока кнопки не будут отпущены. После каждого изменения частоты начальное значение заполнения сигнала всегда составляет 50% (независимо от предыдущей настройки).

Кварцевый резонатор X1 нужен для работы микроконтроллера, благодаря чему получается выход с достаточно точной и стабильной частотой. Также возможно синхронизировать микроконтроллер с его внутренним RC-генератором с номинальной частотой 8 МГц. Преимущество этого решения заключается в том, что не нужно устанавливать резонатор X1 и конденсаторы C3 / C4, но большим недостатком будет неточная и нестабильная частота выходного сигнала.

Конденсаторы С1 и С2 фильтруют напряжение питания. Резистор R2 ограничивает ток, снимаемый непосредственно с вывода PB1 микроконтроллера, предотвращает его повреждение в случае короткого замыкания на выходе CON2.

При программировании не забудьте правильно установить фузы:

Принцип работы и конструкция полупроводникового генератора ВЧ

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на биполярных транзисторах из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на полевиках. Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Схемы генераторов световых и звуковых импульсов

На рис. 8, 9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений.

Рис. 8. Схема генератора световых импульсов, собранного на транзисторах.

Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое.

Рис. 9. Схема генератора звуковых импульсов собранного на транзисторах.

Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц

Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи

И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Цифровой ШИМ генератор на дискретной логике

Однажды мне в голову пришла идея сделать генератор сигнала ШИМ на дискретной логике с кнопочным управлением.

Да, я знаю, что существует не один десяток схем простых генераторов ШИМ сигналов, в том числе и на дискретной логике. Я понимаю, что взяв простенький МК (уже не говорю об arduino) можно было бы за 5 минут и меньше проблем сделать схему гораздо круче. Просто смотря на свои микросхемы дискретной логики мне хочется пускать их в дело. Мне кажется безумно интересным, соединяя несколько микросхем создавать работающие алгоритмы. Так что если вам эта тема так же нравится, то думаю и моя статья вам будет интересна.

Я решил придерживаться принципа генерации ШИМ сигнала используемого в микроконтроллере.

Некоторый счетчик считает от 0 до максимума и в момент обнуления генерирует сигнал сброса

В регистре хранится значение скважности ШИМ и каждый такт система сравнивает текущее значение счетчика с значением из регистра. Если они равны, то генерируется сигнал установки

В итоге получаем ШИМ сигнал.

Для начала необходим тактовый генератор. Так как в схеме будет кнопочное управление, для кнопки было решено применить схему подавления дребезга на триггере Шмидта, К155ТЛ2 или 7414. А значит тактовый генератор логичней всего собрать по следующей схеме.

УПРАВЛЕНИЕ ДЛИТЕЛЬНОСТЬЮ ИМПУЛЬСОВ С ПОМОЩЬЮ НАПРЯЖЕНИЯ

В режиме управления длительностью импульсов с помощью напряжения управляющее напряжение подаётся на вход Ur, который в этом режиме работает как вход АЦП, преобразующего величину напряжения в 10-битное значение (0…1023). Значение 0 (Ur=Vss) соответствует минимальной длительности импульсов, значение 1023 (Ur=Vdd) – максимальной.

Для задания длительности импульсов вручную в качестве источника напряжения можно использовать потенциометр (например, 10–20 кОм), как показано на схеме справа. Так как вход Ur практически не потребляет тока, потенциометр обеспечит линейную регулировку длительности импульсов во всём диапазоне. При этом для снижения помех на входе АЦП и повышения стабильности генерируемой частоты рекомендуется заземлить вход Ur через конденсатор 1–10 мкФ, установленный в непосредственной близости от микросхемы.

Коэффициент заполнения импульсов при управлении напряжением всегда равен 50%.

Регулировка с помощью напряжения осуществляется в трёх диапазонах, выбираемых входами M1:M0:

M1:M0 Режим Длительностьпериода импульсов Минимальнаядлительность(Ur=Vss, АЦП=0) Максимальнаядлительность(Ur=Vdd, АЦП=1023) Дискретностьзаданияпериода
0:0 Быстрый T = *2 мкс 100 мкс (10000 Гц) 2146 мкс (около 466 Гц) 2 мкс
0:1 Средний T = *40 мкс 400 мкс (2500 Гц) 41320 мкс (около 24.2 Гц) 40 мкс
1:0 Медленный T = *1 мс 10 мс (100 Гц) 1033 мс (около 0.968 Гц) 1 мс

Обозначение «(0…1023)» в таблице – это значение АЦП, полученное после преобразования входного напряжения Ur (Vss…Vdd).

Генератор напряжения пилообразной формы

Генератор треугольного напряжения, выполненный по предыдущей схеме, легко преобразуется в генератор пилообразного напряжения. Для этого достаточно обеспечить разную длительность заряда и разряда конденсатора в схеме интегратора. Такие изменения показаны на рисунке ниже



Генератор колебаний пилообразной формы.
Как нетрудно заметить внесённые изменения касаются цепи заряда-разряда конденсатора С1 в интеграторе. Диоды VD1 и VD2 позволяют выполнять заряд-разряд конденсатора разными токами. При изображённой на схеме полярности включения диодов длительность разряда конденсатора С1, а следовательно и длительность линейно-возрастающего напряжения определяется величиной сопротивления резистора R4’, а длительность заряда С1 и линейно падающего сигнала на выходе интегратора – сопротивлением R4” по следующим формулам

Все остальные аспекты работы схемы аналогичны предыдущей. Так как схема не является симметричной то резистор R5 можно удалить. Частота выходного пилообразного напряжения будет определяться суммой резисторов R4’ и R4”. Стабильность частоты в данной схеме будет ограниченна температурной нестабильностью диодов VD1 и VD2


Высокоточный генератор ШИМ с кнопочным контролем

Как было сказано ранее, очень распространены аналоговые схемы ШИМ-генераторов, в частности на основе NE555

Они просты, неприхотливы, могут работать с большим диапазоном напряжений, но имеют недостаток, который в некоторых случаях может быть недопустим — параметры ШИМ-сигнала (частоту, скважность), во-первых, нельзя установить с большой точностью, а во-вторых, эти параметры могут «уплывать» при изменении температуры, влажности и т.д. Для того, чтобы построить высокоточный генератор ШИМ-сигналов не обойтись без микроконтроллера, тактируемого от точного кварца

В этом случае можно будет настраивать скважность с точностью до 1%, а также выбирать частоту из заранее заданных вариантов. Предусмотрен выбор частот между 10/20/40/80/1,25/2,5/5 кГц, этих вариантов хватит для любого применения ШИМ-генератора. Схема представлена ниже.

Формирование прямоугольного сигнала с изменяемой частотой

Если вы знакомы с Arduino, то вы должны знать что плата Arduino может достаточно просто формировать ШИМ сигнал (с помощью функции analogwrite) на ряде своих контактов

Но с помощью этой функции можно управлять только коэффициентом заполнения (скважностью) ШИМ сигнала, но нельзя управлять его частотой – а это как раз и нужно для нашего генератора сигналов. Управление частотой сигнала прямоугольной формы можно осуществить используя таймеры платы Arduino и непосредственно переключая состояние контактов на их основе

Помочь нам в этом может библиотека Arduino PWM Frequency Library (библиотека управления частотой ШИМ сигнала), более подробно работу с ней мы рассмотрим далее в статье.

Но в использовании этой библиотеки есть ряд слабых сторон. Дело в том, что данная библиотека изменяет настройки по умолчанию Таймера 1 (Timer 1) и Таймера 2 (Timer 2) платы Arduino. В связи с этим вы уже не сможете, к примеру, использовать библиотеку для управления серводвигателем или другие библиотеки, задействующие эти таймеры платы Arduino. Также функция analogwrite на контактах 9,10,11 & 13 использует Timer 1 и Timer 2, следовательно, вы уже не сможете формировать SPWM сигнал (синусоидальный ШИМ сигнал) на этих контактах.

Но преимуществом этой библиотеки является то, что она не мешает работа Таймера 0 (Timer 0) платы Arduino, который в нашем случае является более важным чем Timer 1 и Timer 2 потому что в этом случае вы можете без проблем использовать функцию задержки (delay) и функцию millis(). Также контакты 5 и 6 управляются Таймером 0, поэтому мы без проблем сможем использовать на этих контактах функцию analogwrite или осуществлять управление сервомотором.

Зачем нужны ТТ

Подключение трехфазных счетчиков через трансформаторы тока Меркурий дает возможность расширить диапазон измеряемых параметров до нескольких сотен Ампер. Достичь этого удается за счет применения преобразующих устройств с фиксированным коэффициентом трансформации (чаще всего он равен 20-ти). Поскольку счетчики типа Меркурий рассчитаны на токи не более 60-ти Ампер – использование трансформатора позволяет снимать показания при их значениях в питающих цепях, достигающих многих сотен Ампер.

У других моделей ТТ коэффициент трансформации имеет «свои» значения (5, 30, 40 и т. д.).

Выбор конкретного образца преобразователя зависит от расчетного уровня токовой нагрузки в потребительской сети. Если значение тока не превышает 60-ти Ампер, что случается крайне редко, допускается прямое подсоединение счетчика в контролируемую цепь.

Использование мультивибраторов

Практические примеры использования мультивибратора приведены на рис. 4, 5.

Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.

На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.

Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.

На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-

щий экран).

Рис. 5. Генератор переменной частоты — схема.

Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).

Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.

Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.


Смотреть галерею