Содержание
Как собрать мигалку на светодиодах своими руками
Немного теории. Мультивибратор это по сути двухкаскадный усилитель на транзисторах VT1 и VT2 с цепью положительной обратной связи через электролитический конденсатор С2 между каскадами усиления на транзисторах VT2 и VT1. Такая обратная связь превращает схему в генератор. Название симметричный мультивибратор обусловлено одинаковыми значениями пар элементов R1=R2, R3=R4, C1=C2. При таких значениях элементов мультивибратор будет генерировать импульсы и паузы между импульсами равной длительности. Частота следования импульсов задается в большей степени значениями пар R1=R2 и C1=C2. Контролировать длительность импульсов и пауз можно будет по вспышкам светодиодов. При нарушении равенства пар элементов мультивибратор становится несимметричным. Несимметричность будет обусловлена прежде всего различием в длительности импульса и длительности паузы.
Мультивибратор собирается на двух транзисторах, кроме того потребуется четыре резистора, два электролитических конденсатора и два светодиода для индикации работы мультивибратора. Задача приобретения деталей и печатной платы решается легко. Вот ссылка на покупку готового набора деталей http://ali.pub/2bk9qh. Набор включает в себя все детали, добротную печатную плату размером 28 мм × 30 мм, схему, монтажную схему и спецификацию. Ошибок расположения деталей на рисунке печатной платы практически нет.
Состав набора деталей мультивибратора
Принципиальная электрическая схема мультивибратора
Приступим к сборке схемы, для работы потребуется маломощный паяльник, флюс для пайки, припой, бокорезы и батареи питания. Схема простая, но ее надо собрать правильно и без ошибок.
- Ознакомьтесь с содержимым пакета. Расшифруйте по цветовому коду номиналы резисторов и установите их на плату.
- Припаяйте резисторы и откусите выступающие остатки электродов.
- Электролитические конденсаторы должны размещаться на плате определенным образом. В правильном размещении вам поможет монтажная схема и рисунок на плате. Электролитические конденсаторы имеют на корпусе маркировку отрицательного электрода, а положительный электрод имеет чуть большую длину. Расположение отрицательного электрода на плате находится в заштрихованной части обозначения конденсатора.
- Установите конденсаторы на плату и припаяйте их.
- Размещение транзисторов на плате строго по ключу.
- Светодиоды также имеют полярность электродов. Смотрите фото. Устанавливаем и припаиваем их. Старайтесь не перегревать эту деталь при пайке. Плюс светодиода LED2 находится ближе к резистору R4 (смотрите видео).
- Припаяйте согласно полярности проводники питания и подайте напряжение от батарей. При напряжении питания 3 Вольта светодиоды включились вместе. После секундного разочарования, было подано напряжение от трех батарей и светодиоды начали попеременного мигать. Частота мультивибратора зависит от напряжения питания. Так как схема должна была устанавливаться в игрушку с питанием от 3 Вольт пришлось заменить резисторы R1 и R2 на резисторы номиналом 120 кОм, четкое попеременное мигание было достигнуто. Смотрите видео.
Мигалка на светодиодах — симметричный мультивибратор
Простая мигалка на светодиодах. Твоя первая схема
Watch this video on YouTube
Применение схемы симметричного мультивибратора весьма широко. Элементы схем мультивибратора найдутся в вычислительной технике, радиоизмерительной и медицинской аппаратуре.
использованная литература
Мультивибратор в IEEE Std. 100 Словарь стандартных терминов 7-е изд. , IEEE Press, 2000 ISBN 0-7381-2601-2 стр. 718
Уилфред Беннетт Льюис (1942)
Электрический счет: особое внимание уделяется счету альфа- и бета-частиц. CUP Архив
п. 68.
Электрик . 128 . 13 февраля 1942 г.
Owen Standige Puckle и EB Moullin (1943). Базы времени (сканирующие генераторы): их конструкция и разработка, с примечаниями по электронно-лучевой трубке . Chapman & Hall Ltd. стр. 51.
Бриттон шанс (1949). (том 19 из серии Радиационной лаборатории Массачусетского технологического института). McGraw-Hill Book Co., стр. .
OS Puckle (январь 1949). «Развитие основ времени: принципы известных схем». Беспроводной инженер . Публикации Iliffe Electrical. 26 (1): 139.
^ Дональд Финк (редактор), Справочник инженеров-электронщиков , McGraw Hill, 1975 ISBN 0-07-020980-4 , стр. 16-40
Несимметричный мультивибратор
Несимметричный мультивибратор, выполненный на транзисторах VT5 и VT6, имеет одно устойчивое состояние, при котором транзистор VT5 заперт, а транзистор VT6 открыт. В этом устойчивом состоянии мультивибратор находится при отсутствии напряжения поднесущей частоты на входе схемы автоматического переключения. При этом через управляющие цепочки R25, VD2 и R34, VD5, подключенные к коллекторным цепям транзисторов VT5 и VT6, на диоды VD3 и VD4 полярного детектора подаются постоянные напряжения. Полярность подаваемых напряжений такова, что диоды полярного детектора открыты и не влияют на проходящий через них монофонический сигнал.
Несимметричный мультивибратор, собранный на транзисторах V8 и V9, работает в автоколебательном режиме. Импульсное напряжение с выхода мультивибратора через эмиттерный повторитель ( транзистор У / 0) подается на звуковой генератор, собранный на транзисторе VII. Звуковой генератор представляет собой простейший блокинг-генератор с коллекторно-базовыми связями, работающий в ждущем режиме. Эмиттерный повторитель устраняет влияние звукового генератора на работу мультивибратора.
Схема стереодекодера радиолы Рига-101 — стерео. |
Несимметричный мультивибратор на транзисторах V5 и V6 имеет одно устойчивое состояние, при котором транзистор V5 заперт, a V6 открыт. В этом устойчивом состоянии мультивибратор находится при отсутствии напряжения поднесущей частоты на входе схемы автоматического переключения. При этом через управляющие цепочки R25, V15 и R34, V16, подключенные к коллекторным цепям транзисторов V5 и V6, на диоды VII и V12 полярного детектора подаются постоянные напряжения. Полярность подаваемых напряжений такова, что диоды детектора открыты и не влияют на проходящий через них монофонический сигнал.
Несимметричный мультивибратор с эмиттерной связью. |
Несимметричный мультивибратор с эмиттерной связью ( рис. 5.12 а) может работать как в заторможенном, так и в автоколебательном режиме. Наиболее широко этот мультивибратор применяется как ждущий генератор импульсов прямоугольной формы.
Собрать несимметричный мультивибратор и, поочередно изменяя сопротивления резисторов Roc, R, R, наблюдать за изменениями параметров импульсов выходного напряжения.
Существуют несимметричные мультивибраторы с сеточно-анодной ДС-связью правого и левого триодов. Роль одного триода в таких мультивибраторах может выполнять лампа оконечного каскада строчной или кадровой развертки. Такие схемы используются в удешевленных моделях телевизоров, так как из-за комбинированного включения некоторые параметры оконечного каскада ухудшаются.
Принципиальная схема миниатюрного генератора сетчатого поля. |
Применение несимметричного мультивибратора связано с необходимостью получения на его выходе импульсов с достаточно большой скважностью, что определяет толщину горизонтальных линий на экране телевизора.
В несимметричном мультивибраторе интервалы времени зарядки / а — 1 и разрядки / з — ti конденсатора различны. Это достигается включением в цепь отрицательной обратной связи параллельно двух различных резисторов: один для зарядки, а другой для разрядки конденсатора. Для этого последовательно с каждым из этих резисторов включается диод, прямое направление которого соответствует току зарядки или току разрядки.
В несимметричном мультивибраторе интервалы времени зарядки ti — ti и разрядки t -), — t — i конденсатора различны. Это достигается включением в цепь отрицательной обратной связи параллельно двух различных резисторов: один для зарядки, а другой для разрядки конденсатора. Для этого последовательно с каждым из этих резисторов включается диод, прямое направление которого соответствует току зарядки или току разрядки.
В несимметричных мультивибраторах транзисторы обычно выбирают одинаковыми, коллекторные нагрузки — равными, однако Rei Кв2, Св И Сб2 — Чем короче должен быть один из импульсов, тем меньшей выбирают соответствующую постоянную времени.
В несимметричных мультивибраторах лампы обычно выбирают одинаковыми, а анодные нагрузки — равными. Чем короче должен быть один из импульсов, тем меньше выбирают соответствующую постоянную времени. Однако при очень малой длительности импульса другой конденсатор не успевает заряжаться до полного напряжения источника.
Схема мультивибратора в автоколебательном режиме ( а и временные диаграммы напряжений ( б. |
Налаживание
На рабочую частоту мультивибратора значительное влияние оказывает ёмкость нагрузки и напряжение питания. Например, при изменении напряжения питания от 5 до 15 В частота изменяется с 2850 до 1200 Гц при работе на мультивибратора на нагрузку в виде телефонного капсюля с сопротивлением обмотки 56 Ом. В области малых напряжений питания изменение рабочей частоты более значительно
Подбором сопротивлений резисторов R5, R11, R6, R8 можно задать форму импульсов почти строго прямоугольной при работе мультивибратора с конкретной подключенной нагрузкой при заданном напряжении питания.
Этот мультивибратор может найти применение в различных сигнальных устройствах, устройствах звукового оповещения, когда при небольшом имеющемся напряжении источника питания требуется получить значительную мощность на излучателе звука. Кроме того, его удобно использовать в преобразователях низкого напряжения в высокое, в том числе, работающих на низкой частоте осветительной сети 50 Гц.
Бутов А. Л. РК-2010-04.
Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.
Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты
Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.
Схема состоит из:
– двух КТ315Б (можно с любой другой буквой)
– двух конденсаторов емкостью по 10 микроФарад
– четырех , два по 300 Ом и два по 27 КилоОм
– двух китайских светодиодов на 3 Вольта
Вот так устройство выглядит на макетной плате :
А вот так он работает:
Для изменения длительности моргания светодиодов можно поменять значения конденсаторов С1 и С2, или резисторов R2 и R3.
Существуют также другие разновидности мультивибраторов. Подробнее о них можно прочитать . Также там описан принцип работы симметричного мультивибратора.
Кому лень собирать такое устройство, можно приобрести готовое;-) На Алике я даже находил готовое устройство. Его можете глянуть по этой
ссылке.
Вот видео, где подробно описывается, как работает мультивибратор:
Мультивибратор — прибор для создания несинусоидальных колебаний. На выходе получается сигнал любой другой формы, кроме синусоидальной волны. Частота сигнала в мультивибраторе определяется сопротивлением и емкостью, а не индуктивностью и емкостью. Мультивибратор состоит из двух каскадов усилителя, выход каждого каскада подается на вход другого каскада.
Ждущий мультивибратор
Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение.
Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса.
В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.
Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.
Рис. 5 — Ждущий мультивибратор
В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.
Блокинг-генераторы
Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс
Обычно блокинг-генератор работает в режиме большой скважности, т. е
длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.
При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации
Альтернативные схемы
Рассмотрим несколько альтернативных схем, а также некоторые способы улучшить характеристики мультивибратора.
Мультивибраторы с регулировкой частоты и скважности
Рис. 8
Схема мультивибратора с регулировкой частоты (слева) и скважности (справа)
В левой схеме за счёт переменного резистора меняются величины Rб, значит, и частота генератора. В правой сумма Rб1 + Rб2 остаётся неизменной, но меняется соотношение сопротивлений в базовых цепях
Таким образом, частота фиксирована, зато меняется скважность (соотношение длины импульса и паузы). Строго говоря, это уже несимметричный мультивибратор
Мультивибратор с улучшенной формой сигнала
Если Вы внимательно читали объяснение работы мультивибратора выше, Вы помните, что после переключения транзисторов происходит быстрый перезаряд одного из конденсаторов через коллекторный резистор Rк (см. рис. 5, красная линия). Однако, поскольку полезный сигнал снимается именно с коллектора, меняющееся на конденсаторе напряжение вносит в этот сигнал совершенно ненужные помехи. В схеме на следующем рисунке введён дополнительный резистор, через который и происходит тот самый заряд конденсатора:
Рис. 9. Разделяем пути заряда и разряда конденсаторов: улучшаем форму сигнала
От коллектора конденсатор отделён диодом, который не даёт конденсатору искажать фронт импульса в момент переключения транзисторов. Но этот же диод прекрасно позволяет конденсатору заряжаться во время квази-стабильного состояния мультивибратора между переключениями через Rб — диод — открытый транзистор.
Мультивибратор на логических элементах
Рис. 10. Мультивибратор на элементах 2И-НЕ
Трёхфазный мультивибратор
Рис. 11. Схема трехкаскадного мультивибратора
Здесь последовательно включены не два каскада, а три. Работает схема таким образом, что в каждый момент времени 2 транзистора открыты, один закрыт. Вы можете сами попробовать разобраться в работе этой схемы, взяв за основу описание симметричного мультивибратора выше.
Рис. 12. Рабочая моделька
Детали и печатная плата прототипа микросхемы LM3909
В схеме применены резисторы типоразмера 0805, транзисторы в корпусе SOT-23. VT1 – BC817-40, корпус SOT-23 – 1 шт., VT2, VT3 – BC847, корпус SOT-23 – 2 шт., VT4 – BC857, корпус SOT-23 – 1 шт., R1 – Чип резистор J0805-12 Ом – 1 шт., R2 – Чип резистор J0805-6,2 кОм – 1 шт., R3 – Чип резистор J0805-3 кОм – 1 шт., R4, R5 – Чип резистор J0805-390 Ом – 2 шт., R6, R8 – Чип резистор J0805-20 кОм – 2 шт., R7 – Чип резистор J0805-10 кОм – 1 шт., R9 – Чип резистор J0805-100 Ом – 1 шт., Печатная плата 27,5×20 мм.
Размеры печатной платы прототипа ИМС LM3909 выбраны не самые маленькие (27,5×20 мм), что позволило не мельчить с расположением элементов (рис. 10) и сделать доступной сборку начинающим радиолюбителям.
Рис. 10. Расположение элементов и токопроводящих дорожек на печатной плате
Монтаж поверхностных компонентов на печатной плате осуществляется в следующей последовательности: R7 –> R9 –> R8 –> VT2 –> VT3 –> VT4 –> VT1 –> R1 –> R4 –> R6 –> R5 –> R3 –> R2. Фотография смонтированной печатной платы показана во вводной части статьи.
Симметричный мультивибратор
Эквивалентные схемы цепей заряда конденсаторов связи мультивибратора с анодной связью.| Схема мультивибратора, работающего в режиме автоколебаний, рассчитанного в примере 8 — 4. |
Рассчитать симметричный мультивибратор, работающий в режиме автоколебаний ( рис. 8 — 27) налампебЛ), длительность селекторного импульса которого составляет 50 мксек.
Схема симметричного мультивибратора ( рис. 12.3) представляет собой двухкаскадный усилитель напряжения с емкостной связью, в котором создана положительная обратная связь за счет соединения выходных и входных зажимов.
Синхронизация симметричного мультивибратора, в зависимости от способа подачи синхронизирующего напряжения, возможна при четных и при нечетных коэффициентах деления. В обоих случаях синхронизируются как весь период, так и его отдельные части.
Расчет симметричного мультивибратора с коллекторно-базовыми связями ( рис. 8 — 7) производят следующим образом.
В симметричном мультивибраторе при С — С2 С и Rs R52Ro длительности полупериодов одинаковы.
В симметричном мультивибраторе транзисторы, сопротивления резисторов в цепях коллекторов и баз, а также емкости конденсаторов С3 и С2 одинаковы. Устойчивое состояние схемы, при котором оба транзистора отперты, невозможно. Всякое изменение одного из токов или напряжений ведет к лавинообразному процессу, в результате которого один из транзисторов запирается, а другой отпирается. Время пребывания схемы в этом состоянии определяется постоянной времени цепи разряда конденсатора С2 или Сз. Когда напряжение на конденсаторе достигнет нулевого значения, один транзистор отпирается, а другой запирается. Процесс этот повторяется, при этом амплитуда импульсов на коллекторах транзисторов близка к напряжению источника питания.
Схемы синхронизации симметричного мультивибратора при.| Временные диаграммы импульсного делителя с малой скважностью при делении частоты следования коротких импульсов.
Зовы синхронизации симметричного мультивибратора, построенные по уравнениям ( 16 — 17) — ( 16 — 20), показаны на рис. 16.8 а.
Зоны синхронизации ( п 1, 2, 3, 4 импульсного делителя с малой скважностью при делении частоты следования. а — коротких импульсов. б — прямоугольник импульсов.
б — прямоугольник импульсов.
При синхронизации симметричного мультивибратора синусоидальными колебаниями лучше всего в цепи управления подавать синфазные сигналы ( рис. 16.6 а), если необходимо получить четный коэффициент деления, и противофазные сигналы ( рис. 16.6 6), если необходимо получить нечетный коэффициент деления. Для рассмотрения каждого случая удобно представить напряжение в цепях управления в виде, показанном на рис. 16.9 а и б, где, с учетом принятой ранее идеализации, изображены оба полупериода мультивибратора на одной временной диаграмме.
Осцилляторные схемы симметричных мультивибраторов. |
Осцилляторные схемы симметричных мультивибраторов на транзисторах и лампах ( рис. 17.4) получены при замене одного из времяза-дающих конденсаторов мультивибратора кварцевым резонатором.
Рассмотрим работу симметричного мультивибратора, изображенного на рис. 5.50. Схема мультивибратора представляет собой двухкаскадный усилитель, замкнутый петлей положительной обратной связи.
Рассмотрим работу симметричного мультивибратора, как наиболее простого. Так как схема симметричная, то можно предположить, что после ее включения токи в транзисторах и напряжения на конденсаторах достигнут одинаковой величины и мультивибратор будет находиться в равновесии.
Напряжение питания и ток
Спаяли. Заработало. А от чего питать? Мультивибратор начинает работать уже от 1,5 вольт (конечно с желтыми или красными светодиодами). То есть ограничение по нижнему пределу напряжения упирается в вольтаж LED элементов. И поставив белые светики потребуется питать уже от литиевого АКБ, так как 3 В (2 АА батареи) будет маловато. С ростом напряжения частота мигания замедляется — учитывайте этот момент.
Верхний предел напряжения определяется вольтажом конденсаторов и параметрами транзисторов, насколько они выдержат Uкэ. Что касается токоограничения — нет смысла вешать резистор на каждый из светодиодов — достаточно одного общего на 100 — 500 Ом по плюсу или минусу (без разницы) всей схемы. Проверено — отлично работает!
Потребление тока должно быть на уровне одного светодиода (ведь в каждый момент времени светится только один LED элемент, даже в шестифазном мультике). То есть если ставите светодиоды обычные на 5 мм — задавайте 5-10 мА, если мощные полуваттные — соответственно ток выставляйте на его паспортное значение — это около 100-200 мА.
Конечно можно собрать мигалку на микросхемах, контроллерах, где эффект будет даже с подвыподвертом, но есть ли смысл усложнять дело? Может ещё на радиолампах попробуете сделать? Как вам например мультивибратор на 6Н2П
В общем собирайте, проверяйте на макетной плате, паяйте и прокачивайте свой скилл электронщика, всем пока!
Обсудить статью МУЛЬТИВИБРАТОР НА 3, 4, 5, 6 КАНАЛОВ
Интегральная микросхема LM3909
Несимметричный мультивибратор на транзисторах разной структуры, показанный на рис. 2, послужил прототипом монолитной интегральной микросхемы (ИМС) фирмы National Semiconductor, разработанной специально для питания от гальванических элементов напряжением 1,5 В . Устройства на её основе обладают высокой экономичностью и обеспечивают большой срок работы без замены элементов питания. Упрощённая принципиальная схема LM3909 представлена на рис. 8. Используется всего два навесных элемента: светодиод HL1 и конденсатор C1, определяющий частоту генерируемых импульсов и одновременно участвующий в работе схемы «вольтодобавки“. Это позволяет работать со светодиодами, имеющими прямое падение напряжения 1,6…2,0 В при напряжении питания 1,5 В и менее.
Рис. 8. Структурная схема – типовая схема включения ИМС LM3909. Ток потребления 0,32 мА
Максимальное напряжение питания микросхемы не должно превышать 6 В. Для защиты микросхемы при работе на пороге максимальных питающих напряжений служит стабилитрон VD1.
Устройства на микросхеме LM3909 могут найти применение в игрушках, рекламных изделиях, индикаторах предупреждения и т.п. Использование ИМС LM3909 рассмотрено в целом ряде радиолюбительской литературы .
Автоколебательный режим мультивибратора.
В автоколебательном режиме мультивибратор возбуждается и генерирует прямоугольные импульсы сразу же после включения источника питания. Процесс возбуждения и генерирования импульсов показан графиками на рис.2.
В момент включения питания транзисторы обеих плеч мультивибратора начинают открываться, т.к. на их базы через базовые резисторы подается отрицательное напряжение смещения.
Одновременно начинают заряжаться конденсаторы связи: С1 — через базово-эмиттерный переход VT2 и резистор Rк1, С2 — через VT1 и Rк2. Нужно заметить, что при подаче постоянного напряжения на конденсаторы ток проходит через них только во время заряда. Так вот, во время заряда ток проходит через конденсаторы, транзисторы и резисторы у которых в реальности, даже при тщательном подборе идентичных пар, не будет идеального совпадения параметров. У транзисторов будет хоть какая-та разница коэффициентов передачи токов; от различия параметров базовых резисторов будет отличатся величина напряжения смещения на базах транзисторов и т.д.
Предположим, что в момент включения источника питания транзистору VT1 повезло и у него ток больше, чем у соседа VT2. Вследствие этого падение напряжения на Rк1 будет больше чем у Rк2. Так как напряжение источника коллекторного питания отрицательно, то поэтому потенциал коллектора VT1 станет менее отрицательным, а у VT2 — более отрицательным. Но так как изменения через конденсаторы передаются на базы транзисторов, то это приведет к еще большему нарастанию тока коллектора VT1 и его насыщению, а ток VT2 уменьшится и он запрется. Конденсаторы оказываются заряженными до напряжений близких к Еп (полярность указана на рис.1).
На рис.2 показаны эти процессы за период от «0» до «to», где приводятся графики следующих напряжений: Uc1, Uc2 — на обкладках конденсаторов; Uб1, Uб2 — смещения на базах; Uк1, Uк2 — выходные сигналы мультивибратора.
После прекращения изменений коллекторных токов конденсатор С1 сравнительно медленно разряжается через
Rб1, Rб2, источник питания и переходы открытого VT1. Напряжения конденсатора Uc1 и базы транзистора Uб2 убывают по экспоненте ( на графике период to — t1), и когда положительный потенциал Uб2 уменьшится и станет отрицательным — VT2 отпирается. Это приводит к уменьшению его отрицательного потенциала на коллекторе, который передается через С2 на базу VT1 и ускоряет его запирание. Этот лавинообразный процесс длится до тех пор, пока VT1 не войдет в режим отсечки, а VT2 — в режим насыщения (точка t1).
Таким образом, возникает состояние, противоположное исходному, которое затем в результате выше описанному процессу, вновь переходит в исходное. Таким путем поддерживаются колебания в мультивибраторе.
В симметричном мультивибраторе время заряда конденсатора меньше времени раздяда, т. к. Rк
Частота колебаний мультивибратора определяется постоянными времени разряда τр = Rб1·С2 = Rб2·С1 и ее можно примерно определить по формуле:
где f — частота в Гц;
Rб — сопротивление базового резистора в кОм;
С — емкость конденсатора связи в мкФ.