Электронная нагрузка для блока питания своими руками

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.

Электронная нагрузка USB своими руками

Для тестирования нагрузочной способности питающих и зарядных устройств таких как повербанки, блоки питания, а также аккумуляторы используются USB тестеры плюс подключенными на выход простейшими нагрузками, в виде мощных постоянных или переменных резисторов, лампочек и т.д. Но лучше всего для этих целей подходит электронная нагрузка USB которую можно сделать своими руками за вечер, она может нагружать питающие устройства постепенно вращая ручку потенциометра и ток может достигать вплоть до 5А.

Электронная нагрузка USB своими руками

Характеристики нашей электронная нагрузка USB:

  • Диапазон рабочих напряжений от 4 до 15В (макс. 20В);
  • Диапазон регулировки тока: 0 – 5А (максимальный ток зависит от характеристик токового шунта R9);
  • Максимальная расчётная мощность – 20 Вт;
  • Кратковременная мощность – до 40 Вт;

Как сделать электронную нагрузку USB, инструкция:

Электронная нагрузка не требует внешнего источника питания и питается от входного напряжения USB.

Данная нагрузка являет собой стабилизатором тока и выставленное значение тока не будет изменятся в зависимости от входного напряжения.

Это преимущество позволяет разряжать аккумуляторы стабильным током с целью точного определения их ёмкости. Диапазон входных напряжений данной электронной нагрузки очень велик вплоть до 30В, но я не рекомендую подавать более 20В.

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Предельно допустимая мощность USB нагрузки – до 40Вт, но это в том случае если используется хороший радиатор на выходном транзисторе, плюс использовать принудительное охлаждение небольшим вентилятором, а так с 20Вт это устройство справляется без проблем.

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

От сопротивления и мощности шунта R9 зависит максимальный ток нагрузки, советую использовать SMD резисторы 2 – 5 Вт сопротивлением – от 0,05 до 0,1 Ом.

Электронная нагрузка USB своими руками

Как видим электронная нагрузка USB сделанная своими руками показывает хорошие результаты и всегда пригодится в хозяйстве при тестировании блоков питания, повербанков и аккумуляторов.

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Электронная нагрузка USB своими руками

Схему и разводку печатной платы электронной нагрузки можно скачать отсюда.

Забрать к себе:

Токовая электронная нагрузка

Электронная нагрузка вещь очень полезная, предназначена для теста источников питания, в том числе и аккумуляторов.
Например если имеется сомнительный блок питания и нужно выяснить его выходные параметры первым делом нужно его нагрузить, при этом каждый блок питания требует индивидуального расчета нагрузочного резистора и чем мощнее блок, тем мощнее должен быть нагрузочный резистор.
Электронная нагрузка выполняет ту же функцию, только является универсальным вариантом для любых источников питания.

Наш вариант очень простой и построен всего на одном операционном усилителе LM358, но задействован всего один элемент ОУ.

Мощность рассеивается на транзисторах, поэтому чем больше их количество и ток коллектора каждого транзистора, тем больше может быть общая мощность рассеиваемая электронной нагрузкой.
В теории общий ток может доходить до 40 Ампер с учетом тока коллектора кт827, но в деле естественно все будет зависеть от напряжения тестируемого источника питания, если мощность превышает 250 ватт, транзисторам придет кирдык, уделите этому моменту должное внимание.

Мощные резисторы в этой схеме тоже рассеивают некоторую мощность (и не малую). Эмиттерные резисторы предназначены для выравнивания тока через транзисторы, мощный низкоомный шунт R12 служит датчиком тока, на нем будет рассеиваться колоссальная мощность, поэтому этот резистор подбираем с мощностью около 40 ватт.

Принцип работы довольно прост.

При подключении нагрузки образуется падение напряжения на шунте R12 и нарушается баланс напряжений на входах операционного усилителя, последний будет стараться уравновесить это напряжение за счет изменения выходного напряжения, уменьшая или увеличивая его. Тем самым измениться напряжение на базах составных транзисторов, в следствии чего изменится и ток проходящий по ключам.

Переменными резисторами мы можем искусственным образом изменить напряжение на неинвертирующем входе ОУ, этим управляем током протекающий по транзисторам.

Трансформатор в схеме нужен только для питания операционного усилителя и блока индикаторов, поэтому он нужен маломощный. Вторичное напряжение трансформатора от 9 до 15 Вольт, все ровно потом это напряжение будет стабилизировано до уровня 12 Вольт.

Нынче КТ827 очень дороги, но уверяю, они являются наилучшим решением в этой схеме, знаю что появятся вопросы на счет внедрения полевых транзисторов и должен сказать, что пробовал и с ними. Проблема в том, что при больших токах полевики тупо коротят, я думаю в случае их использования не помешает отдельное управление.

А так можно использовать любые составные ключи, в том числе и кт829, естественно нужно учитывать, что ток этих транзисторов в несколько раз ниже, чем ток коллектора КТ827.

Кнопкой S1 меняем чувствительность ОУ, этим можем переключить нагрузку на более точных измерений малых токов.

Свою конструкцию я дополнил ваттметром, который имеет функцию измерения емкости и в итоге получил электронную нагрузку с функцией разряда аккумуляторов с целью выявления их емкости, притом система может разряжать аккумуляторы большим током (лично тестировал на токах до 20 Ампер, никаких нареканий). Монтаж простенький, корпус позаимствован у лабораторного источника питания PS-1502.

Каждый транзистор установлен на свой радиатор, вся система дополнена активным охлаждение, притом имеется простенькая схема регулировки оборотов кулера.

В архиве находится печатная плата. А с вами был Ака Касьян, удачи в творчестве, до новых встреч!

Архив

Схема


Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
  3. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
  4. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Устройства на 200 Вт (adsbygoogle = window.adsbygoogle || []).push({});

Нагрузка электронная на 200 Вт включает в себя две пары тиристоров, которые соединяются попарно. У многих моделей используются проводные компараторы низкой частоты. Также стоит отметить, что для сборки модификации потребуется модулятор. Для ускорения процесса генерации сигнала используются усилители. Данные элементы способны работать только от проводных фильтров.

Трансивер стоит устанавливать за обкладками. В данном случае напряжение нагрузки равняется примерно 400 В. Специалист говорят о том, что плохо работают устройства на проводниковых трансиверах. У них низкая проводимость, есть проблемы и с перегревом. Если наблюдаются скачки напряжения, стоит поменять компаратор. Еще проблема может заключаться в резисторе.

Электронная нагрузка до 500 вт своими руками

Простая электронная нагрузка для начинающих

Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htm

Эта статья является предисловием к более сложному устройству и предназначена для тех, кто постоянно тасует мощные резисторы и лампочки, используемые как нагрузка, а знаниями (опытом, решимостью) для сборки сложных схем еще не обладает.

Начиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):

На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.

К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток. Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения. Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.

Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.

Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.

Вспомогательными элементами схемы являются:

  • диод VD1 защищающий схему от неправильной подачи питания;
  • интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
  • светодиод HL1, индицирующий подачу питания;
  • светодиод HL2, индицирующий опасно высокое входное напряжение.

Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.

Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):

Рисунок платы — в прилагаемом файле, зеркалить не нужно.

Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей. Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X). Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.

Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.

Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.

А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.

Общая информация об электронных нагрузках

Электронная нагрузка — это прибор, предназначенный для имитации различных режимов работы реальной электрической нагрузки. При этом электронная нагрузка может работать в нескольких режимах потребления. К наиболее распространённым относятся: режим постоянного сопротивления, режим постоянного тока потребления, режим постоянной мощности и режим стабилизации напряжения. Также большинство моделей электронных нагрузок поддерживают режим изменения своего состояния по списку заданных пользователем значений, что позволяет реализовать сложные алгоритмы тестов, максимально соответствующие работе проверяемых устройств в реальных условиях.

Основные режимы работы электронных нагрузок.

Для чего используются электронные нагрузки

Основная задача электронных нагрузок — это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Примеры устройств, для проверки работы которых применяют электронные нагрузки.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Задняя панель маломощной электронной нагрузки серии IT8800 с интерфейсными разъёмами для подключения к компьютеру.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

Требования к электронному резистору

  1. Безопасность для автомобиля.
  2. Если нужно вставить оригинал снова, он пойдёт без проблем.
  3. Должен действовать как оригинал — осуществлять контроль скорости.
  4. Не может превышать цену оригинала, желательно даже б/у.
  5. Не создавать помехи в эфире — иногда хочется послушать радио в авто.

Сама схема устройства и программа на С к микроконтроллеру была создана за вечер. Печатная плата и пайка.

Было проведено тестирование схемы под большой нагрузкой. Такая воздуходувка тянет от 15 А. Самым сложным моментом показалась адекватная защита от влаги, которая является основной причиной повреждения резистора (в моем случае он заржавел). Отказался от лаков и силиконов в пользу термоклея — плотно залил плату с обеих сторон, затем швы у основания, и, наконец, приклеил одну к другой, не жалея клея. Из него был создан целый клеевой куб, в который вмонтирована вся электроника (кроме транзистора и диода с маленькими радиаторами.

Полезное: Знаменитый усилитель мощности класса A First Watt Нельсон Пасс

Температура радиаторов во время работы не превышала 40 градусов в любое время, и к тому же они постоянно охлаждаются потоком воздуха. Наконец, резистор помещается в вентиляционный канал.

Учитывая что схема была простой, использовал IRFB7537. Это не совсем подходящий транзистор, но его максимальный ток составляет 170 А и он имеет очень низкое сопротивление — 2,5 мОм, что было ключевым в его выборе и даже лучше, чем использование STP40 с более высоким сопротивлением.

Задана начальная частота ШИМ 100 Гц, только вентилятор на низких оборотах очень сильно давал те 100 Гц гудения, что раздражало. Поэтому увеличил частоту до 5 кГц — вот теперь звук практически не слышен. К сожалению, после увеличения частоты также повысилась ожидаемо температура мосфета и диода на несколько градусов, поэтому и пришлось ставить небольшие радиаторы. Диод двойной 20 А 200 В. Он должен быть параллельно индуктивной нагрузке, иначе транзистор будет перегреваться.

Осталось обсудить калибровку вращения. На этапе тестирования уже подобрал правильные параметры (программа занимает чуть более 600 байт), но всегда желательно оставлять запас для различных случаев.

Единственной разницей при замене старого резистора на электронный является дополнительный источник питания 12 В, который вывел из гнезда прикуривателя, который неактивен после извлечения ключа из замка зажигания. Сделано это на штекерах, чтобы облегчить разборку, хотя надеюсь больше не будет в этом необходимости.

Чтобы добраться до гнезда, пришлось раскрутить панель. В Toyota Yaris это сделать довольно легко. Практически всё на защелках.

Другие популярные схемы

Приведем простые, доступные проверенные схемы. Опишем их кратко, так как на самом изображении есть расшифровка элементов.

Для паяльника

Чрезвычайно простые схемы для плавной регулировки нагрева паяльника применяют для предотвращения перегрев жала.

Первая схема включает мощный симистор, управляющий линией тиристор-переменник.

Другой простейший вариант для паяльника: нагрузка управляется одним тиристором, степень включения его определяется регулировкой переменного резистора, диод поставлен для защиты от обратного напряжения.

На микросхеме

Применена микросхема фазового регулирования 1182ПМ1. Этот контроллер управляет уровнем открытия симистора, который контролирует нагрузку. Хорошо подойдет для настройки яркости лампочек накаливания.

Для лампочек накаливания с тиристором

Данная сборка регулирует накал обычных лампочек. Регулятор напряжения 220 В на тиристоре своими руками конструируется из диодного моста, конденсатора, двух резисторов — постоянного и переменника. Селектором последнего меняется влияние на ключ этого тиристора, что модулирует его пропускную способность по току.

Как сделать своими руками

Сделать зарядное устройство с диодным мостом самому по вышеприведенной схеме не составит особого труда. Достаточно руководствоваться следующими рекомендациями.

Подготовить необходимые комплектующие и инструменты

  • Трансформатор. Если зарядник изготавливается для АКБ  легкового автомобиля «Жигули» емкостью 60 А×ч, то автомобильные характеристики трансформатора должны иметь следующие параметры:
    • мощность не менее 150 Вт, чтобы обеспечить зарядный ток величиной 6 А (оптимальная зарядка по времени с обеспечением стойкости пластин аккумулятора достигается на режиме 10 % от емкости АКБ);
    • напряжение на вторичной обмотке должно быть выше 12 Вольт для нормального прохождения тока через разряженную батарею — в районе 14.4 Вольт.

    Трансформатор с такими характеристиками можно найти в старых электроламповых телевизорах или потертых временем музыкальных центрах, вышедших из строя микроволновых печах и источниках бесперебойного питания. В конце концов в специализированных магазинах можно купить такое устройство за небольшие деньги.

    Старые трансформаторы используют в обмотках алюминиевый провод в отличие от медного он сильнее нагревается. Поэтому возникает необходимость борьбы с перегревом таких трансформаторов. Кулер от неисправного источника питания компьютера поможет решить проблему:

  • Выпрямитель. Для диодного моста следует использовать достаточно мощные диоды, работающие на токе около 10 А. Такими параметрами обладают электронные элементы типа Д246. Возможно найти и другие подобные варианты. Наличие меток с указанием полярности диодов облегчает сборку моста.
  • При работе мощные диоды выделяют большое количество тепла. Монтировать диодный мостик рекомендуется на радиаторе охлаждения, например, имеющихся в старых запасных частях от системного блока компьютера. В случае невозможности найти промышленный радиатор охлаждения можно воспользоваться алюминиевым профилем, как показано на изображении:
  • Для подключения зарядника к бытовой сети необходима сетевая вилка.
  • Монтаж лучше производить на текстолитовой пластине, подходящей по габаритам.
  • Необходим кусок нихромовой проволоки.
  • Амперметр, вольтметр.
  • Диэлектрическая бумага, изолента.
  • Кроме слесарного, основным рабочим инструментом будет паяльник с материалами необходимыми в технологии пайки.

Порядок выполнения работ

  1. Так как трансформатор для самодельного зарядника обычно берется с другого электротехнического устройства, то весьма редко напряжение и сила тока на вторичной обмотке соответствуют требованиям. Следует в таком случае полностью удалить вторичную обмотку, оставив первичную. Выполнить расчеты из школьного курса физики для определения количества витков и диаметра проволоки, подходящими для необходимого напряжения и силы тока. Аккуратно уложить проволоку виток к витку не составит труда. Не стоит забывать делать изоляцию (диэлектрической бумагой, изолентой) между слоями. Концы проволоки вывести и закрепить на корпусе. Для уменьшения вибраций следует пропитать обмотку парафином.
  2. На текстолитовой пластине разместить радиатор охлаждения с установленными на нем четырьмя диодами Д246. Собрать диодный мостик с выводами к клеммам аккумулятора. Зачистить концы выводов.
  3. В разрыв между диодным мостом и аккумулятором подключается амперметр и устанавливается  кусок нихромовой проволоки. Один конец ее жестко закрепляется, а второй остается подвижным, чтобы была возможность менять длину нихромовой проволоки и варьировать величиной сопротивления. Такой самодельный переменный резистор позволит производить регулирование тока подаваемого на аккумулятор.
  4. Все соединения необходимо заизолировать изолентой. Готовое устройство для обеспечения электробезопасности следует поместить в подходящий корпус.
  5. Амперметр будет отслеживать процесс зарядки. Когда показания силы тока на нем будут в районе 1 А, можно сделать вывод, что аккумулятор зарядился.
  6. Контролировать зарядку можно и с помощью вольтметра, однако при подключенном зарядном устройстве его показания будут немного выше.

Мощный ШИМ регулятор

Очередное электронное устройство широкого применения. Представляет собой мощный ШИМ (PWM) регулятор с плавным ручным управлением. Работает на постоянном напряжении 10-50V (лучше не выходить за диапазон 12-40V) и подходит для регулирования мощности различных потребителей (лампы, светодиоды, двигатели, нагреватели) с максимальным током потребления 40А. Прислали в стандартном мягком конверте


Корпус скрепляется на защёлках, которые легко ломаются, поэтому вскрывать аккуратно.


Внутри плата и снятая ручка регулятора


Печатная плата — двусторонний стеклотекстолит, пайка и монтаж аккуратные. Подключение через мощный клеммник.


Вентиляционные прорези в корпусе малоэффективны, т.к. почти полностью перекрываются печатной платой.


В собранном виде выглядит примерно так


Реальные размеры чуть больше заявленных: 123x55x40мм Принципиальная электрическая схема устройства


Заявленная частота ШИМ 12kHz. Реальная частота изменяется в диапазоне 12-13kHz при регулировании выходной мощности. При необходимости, частоту работы ШИМ можно уменьшить, подпаяв нужный конденсатор параллельно С5 (исходная ёмкость 1nF). Увеличивать частоту нежелательно, т.к. увеличатся коммутационные потери. Переменный резистор имеет встроенный выключатель в крайнем левом положении, позволяющий отключать устройство. Также на плате расположен красный светодиод, горящий в рабочем состоянии регулятора. С микросхемы ШИМ контроллера маркировка зачем-то старательно затёрта, хотя нетрудно догадаться, что стоит аналог NE555

Корпус для активной нагрузки

Что касается коробки, то вот вариант, где корпус сделан на 3D принтере.

Только перемещен дисплей на переднюю панель с кнопками.

Нагрузка 10 A 60 В 150 Вт версии 2.27 в режиме разряда батареи до заданного порогового значения. Меню опций имеет предел отключения 10,8 В. В версии 2.27 меню построено таким образом, что произведение напряжения и тока не может быть установлено выше предела мощности. Например, если установим 10 А, максимальное напряжение будет 15 В. Однако когда установим 50 В, максимальный доступный ток разряда будет поставить невозможно больше, чем 3 А.

В старых версиях не было встроенного перерасчёта и приходилось считать самому, чтоб устройство не сгорело при включении. Нагрузка очень точная и простая в использовании.

Тем не менее, установлен медный радиатор бОльшего размера с вентилятором. Такая сборка от компьютера значительно снизила температуру управляющего транзистора и соответственно меньше шансов повредить его при работе на максимальной нагрузке. В настоящее время такая электронная нагрузка стоит около 25 долларов на Али.

Тут нагрузка подключена к аккумулятору с включенным пределом отсечки.

Через некоторое время напряжение отсечки исчезает, и текущая настройка (0,3 А) скачет, её можно изменить по время.

В левом нижнем положении поочередно отображается мощность потребляемая в Ваттах, количество энергии потребляемой в А/ч, температура в градусах и время.

При покупке стоит обратить внимание, есть ли на кулере наклейка с надписью Cooler Master — она указывает на оригинальный продукт. К сожалению, в последнее время появилось много подделок

Особенности устройств серии Sorensen (adsbygoogle = window.adsbygoogle || []).push({});

Стандартная нагрузка электронная данной серии включает в себя тиристор и линейный компаратор. Многие модели производятся с полюсными фильтрами, которые способны работать при высокой частоте. Также стоит отметить, что на рынке представлены лабораторные модификации. У них достаточно низкий коэффициент рассеивания. Модели довольно часто применяются коммутируемого типа. Показатель перегрузки в среднем равняется 20 А. Системы защиты используются разных классов. На прилавках магазинов есть импульсные модели. Они хорошо подходят для тестирования компьютерных блоков питания. Расширители в устройствах применяются с обкладками.