Генератор из асинхронного двигателя

Содержание

От электродвигателя к электрогенератору

Жизнь человека сегодня немыслима без электричества. Поэтому всюду строятся электростанции, преобразующие энергию воды, ветра и атомных ядер в электрическую энергию. Она стала универсальной, потому что ее можно преобразовать в энергию движения, тепла и света. Это стало причиной массового распространения электродвигателей. Электрогенераторы менее популярны, потому что электричеством государство снабжает централизованно. Но все же иногда случается, что электроэнергия отсутствует, и получить ее неоткуда. В таком случае вам поможет генератор из асинхронного двигателя.

Мы уже говорили выше, что конструктивно электрогенератор и двигатель похожи друг на друга. Отсюда возникает вопрос: нельзя ли это чудо техники использовать в качестве источника как механической, так и электрической энергии? Оказывается, можно. И мы расскажем, как своими руками переделать мотор в источник тока.

Смысл переделки

Если понадобился электрогенератор, зачем его делать из двигателя, если можно купить новое оборудование? Однако качественная электротехника – удовольствие не из дешевых. И если у вас есть не использующийся в данный момент мотор, почему бы ему не сослужить добрую службу? Путем простых манипуляций и с минимальными затратами вы получите отличный источник тока, который сможет питать приборы, обладающие активной нагрузкой. К таким относятся компьютерная, электронная и радиотехника, обыкновенные лампы, обогреватели и сварочные преобразователи.

Но экономия – не единственный плюс. Преимущества электрического генератора тока, сооруженного из асинхронного электродвигателя:

  • Конструкция проще, чем у синхронного аналога;
  • Максимальная защита внутренностей от влаги и пыли;
  • Высокая устойчивость к перегрузкам и короткому замыканию;
  • Почти полное отсутствие нелинейных искажений;
  • Клирфактор (величина, выражающая неравномерность вращения ротора) не более 2%;
  • Обмотки во время работы статичны, поэтому долго не изнашиваются, увеличивая эксплуатационный срок;
  • Выработанное электричество сразу обладает напряжением 220В или 380В в зависимости от того, какой двигатель вы решили переделать: однофазный или трехфазный. Это значит, что к генератору можно напрямую подключать потребителей тока, без инверторов.

Даже если электрогенератор не сможет полностью обеспечить ваши нужды, его можно использовать совместно с централизованным электроснабжением. В этом случае речь снова идет об экономии: платить придется меньше. Выгода будет выражаться в разности, полученной путем вычитания выработанного электричества из суммы потребленной электроэнергии.

Что нужно для переделки?

Чтобы своими руками смастерить генератор из асинхронного двигателя, нужно сначала понять, что мешает преобразованию электрической энергии из механической. Напомним, что для образования индукционного тока необходимо наличие изменяющегося со временем магнитного поля. При работе оборудования в режиме мотора оно создается и в статоре, и в роторе за счет питания от сети. Если же перевести технику в режим генератора, окажется, что магнитного поля нет совсем. Откуда же ему взяться?

После работы оборудования в режиме двигателя ротор сохраняет остаточную намагниченность. Именно она от принудительного вращения вызывает индукционный ток в статоре. А для того чтобы магнитное поле сохранялось, потребуется установка конденсаторов, которые обладает током емкостным. Именно он будет поддерживать намагниченность за счет самовозбуждения.

С вопросом, откуда взялось исходное магнитное поле, мы разобрались. Но как приводить в движение ротор? Конечно, если вы раскрутите его своими руками, можно будет питать небольшую лампочку. Но вряд ли результат удовлетворит вас. Идеальное решение – превращение мотора в ветрогенератор, или ветряк.

Так называют устройство, преобразующее кинетическую энергию ветра в механическую, а затем – в электрическую. Ветрогенераторы снабжены лопастями, которые при встрече с ветром приводятся в движение. Вращаться они могут как в вертикальной, так и в горизонтальной плоскости.

Схема работы

Асинхронный генератор считается одним из наиболее простых и надёжных в плане эксплуатации. Процесс работы выглядит следующим образом:

  • В якорной обмотке с помощью напряжения, что идёт от аккумулятора, создаётся магнитное поле.
  • Вращение элементов поля можно организовать своими руками или же автоматизировать процесс с помощью использования реле.
  • Скорость магнитного поля позволяет вырабатывать электромагнитную индукцию, что провоцирует возникновение электричества.

Составляющие элементы

Генератор из асинхронного двигателя своими руками 220 В создать несложно, но предварительно нужно понять, какие детали входят в механизм. Даже простые модели требуют нужных элементов для воссоздания электричества. Стандартный асинхронный двигатель включает в себя:

  • Статор из сетевой обмотки на три фазы. Они размещаются по его рабочей поверхности в виде намотки.
  • Обмотку, напоминающую звезду и состоящую из контактных колец, что имеют выход к ротору.
  • Щётки, которые не совершают по факту никакой работы, но способствуют включению реостата. Такое приспособление влияет на функциональность обмотки и изменяет параметры её сопротивления.
  • Иногда в механизме может быть встроен специальный автоматический короткозамыкатель, который может закоротить обмотку и остановить элемент реостата, даже если деталь пребывает в работе.

Секреты и тонкости

Чтобы сделать асинхронный двигатель в режиме генератора нужно не только изучить модель устройства, но и подобрать нужные элементы. Специалисты советуют использовать неполярные батареи конденсаторного типа, поскольку электролитические элементы в данную схему не вписываются.

Трёхфазный тип запускает детали конденсаторов с помощью звезды. Это даёт возможность запустить генеративный процесс с небольшими оборотами ротора, но такой способ негативно сказывается на выходе напряжения.

Можно создать генератор, используя и однофазный механизм, но это только в случае, если имеются короткозамкнутые роторы. Нельзя использовать для переделки под генератор коллекторный тип двигателей, поскольку их мощность слишком высока для такого механизма. В домашних условиях узнать о ёмкости батареи конденсаторного типа нельзя. Это стоит учитывать в процессе переделки.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

  • две напряжением 220 вольт;
  • одну — 380.


Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями. На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то — 220.


Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

Устройство генератора

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  3. Контактные кольца имеют надежный крепеж к валу ротора.
  4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Что такое электрический генератор?

Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.

Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.

Мотоблок для электрогенератора

Для жителей сел и поселков за городом использование мотоблока для сборки генератора не является новшеством, так как агрегат очень распространен, и многие проводят земельные работы с его помощью, хотя мотоблок, как другая техника, нередко подвергается поломкам.

При больших повреждениях агрегата владельцы покупают новый, но со старым расстаться хочет не каждый, поэтому старые экземпляры могут использоваться для самостоятельного конструирования генератора переменного тока 220 В. Работой двигателя может обеспечиваться оптимальная производительность асинхронного двигателя в пределах вольтажа от 220 до 380. Мощность двигателя нужно выбирать не менее 15 кВт, а частота оборотов вала должна быть от 800 до 1500 об/мин. Такие характеристики необходимы для полного обеспечения электросети жилища. Ведь с маломощным двигателем получить достаточно энергии не выйдет, а создавать генератор для нескольких осветительных приборов нерационально.

Существуют мастера, которые изготавливают ветрогенератор из асинхронного двигателя своими руками, но в любом случае перед сборкой нужно сначала рассчитать мощность потребления электроэнергии зданием. Ведь в небольших дачных домиках может быть один телевизор или дрель, для которых будет достаточно мощности электрогенератора, переделанного из обычной бензопилы.

Какой асинхронный двигатель нужен: характеристики ротора и статора

Асинхронный трехфазный привод — основная база для генератора переменного тока. Очень часто такие моторы списываются на предприятиях, поэтому найти его можно за низкую цену или бесплатно. Обязательные условия выбора, какой у него ротор и статор:

  • Ротор у такого движка может быть фазный или короткозамкнутый;
  • Статор — с тремя отдельными медными обмотками. Соединение витков между собой допускается по типу «треугольник» или «звезда».

Устройство и принцип работы такого привода состоит в том, что ротор (якорь) — вращающийся элемент, статор — неподвижный. У них обоих основу составляют изолированные стальные пластины. На этих пластинах расположены пазы, в которых идут витки обмотки.

В статоре выходы витков нужно подсоединить в клеммную коробку и установить перемычки для соединения. Кабель для питания также устанавливают здесь.

К каждой фазе статора подсоединяются идентичные напряжения, смещенные на угол, который составляет примерно треть круга. Эти синхронные подводки отвечают за формирование тока в витках статора.

В роторе подключение зависит от особенностей его строения: фазный или короткозамкнутый.

  1. Фазный ротор. У такого ротора витки обмотки аналогичны, как у статора. Их выходы нужно смонтировать на кольца, которые проводят контакт и соприкасаются со схемой запуска и прижимными щетками. Конструкция получается непростая, с ней нужно повозиться. К тому же нужно постоянно наблюдать за частотой вращения и смотреть, не разомкнулись ли контактные кольца, не отошли ли прижимные щетки. Поэтому лучше выбрать ротор короткозамкнутого типа. Или же сделать короткозамкнутый якорь из фазного ротора. Для этого концы обмотки не подключают к кольцам, а сочетают между собой — коротят.
  2. Короткозамкнутый ротор. Как мы уже сказали, он более удобный для самостоятельного создания генератора, так как, в отличие от синхронного генератора, схема у него простая. Кольца-перемычки своими концами соединены и закорочены, подвижных прижимных щеток-контактов нет. Получается все очень просто и надежно, поэтому именно такой якорь и советуем выбирать для своей самоделки.

Советы по изготовлению и эксплуатации

Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

  1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
  2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
  3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
  4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
  5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

Принцип действия прибора

Принцип работы бестопливного генератора Хендершота проще всего объяснит на примере солнечной электростанции. Она производит электричество, используя энергию, получаемую от лучей солнца. Генератор Хендершота работает по схожему принципу, так как он способен получать энергию из окружающей среды, преобразуя один ее вид в другой.

Первоначальная идея изобретателя была достаточно простой: он хотел поместить внутрь устройства намагниченный сердечник, который создавал бы электродвижущую силу. Под действием магнитного поля Земли такой генератор производил бы электричество, не затрачивая никаких невосполнимых ресурсов. К сожалению, в ходе работы Хендершот столкнулся с проблемой. Магнитный компас не всегда показывает на север одинаково: все зависит от его местоположения. Но после многочисленных практических экспериментов ученому удалось достичь результатов, которые используются и по сей день.


Рисунок 3. Принцип работы устройства основан на взаимодействии с магнитным полем Земли

В частности, пересекая магнитное поле с юга на север, он получал истинное расположение северного магнитного полюса.

Первая модель генератора состояла из двух катушек с металлическим стержнем. Внутри каждой катушки размещались конденсаторы. Также в устройство входил магнит и два трансформатора. Внешне устройство выглядело крайне простым, но для получения энергии было необходимо четко следовать инструкции по настройке катушек, чтобы они постоянно находились в резонансе. Соответственно, работать генератор мог только в том случае, если его магнитное поле направлялось строго с севера на юг. Одновременно с этим поле приводилось во вращательное движение, что и создавало электродвижущую силу в катушке (рисунок 3).

К удивлению многих ученых, Хендершоту все же удалось добыть энергию и использовать ее для питания детского самолета. Но, такая энергия очень быстро заканчивалась и генератор приходилось запускать заново.

Работа двигателя в режиме генератора

Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин).  Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:

Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).

Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:

  1. Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
  2. Значение скорости вращения генератора должно соответствовать синхронной скорости.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Виды и описание асинхронного двигателя

Существует два вида моторов:

  1. Короткозамкнутый ротор. Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора? Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки. Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения. Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым. Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность

Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины

Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы. В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции. Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания. Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка. Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Гидро- и ветростанции

Кроме бензиновых устройств, существуют и другие конструкции. Привести в движение вал электромотора можно с помощью ветряка или водяного потока. Конструкции не являются самыми простыми, но благодаря им, можно обойтись без использования бензинового или дизельного топлива.

Такое устройство, как гидрогенератор, можно собрать самостоятельно. При наличии протекающей реки возле дома воду можно применить как силу, вращающую вал. При этом в русло реки устанавливается гидроколесо с лопастями. Таким образом создается течение, вращающее турбину и вал электромотора, а в зависимости от количества установленных турбин и лопастей будет увеличиваться или уменьшаться поток воды и напряжение генератора.

Устройство ветрового агрегата немного сложнее, так как ветровая нагрузка не является постоянной величиной. Обороты ветряка, которые передаются на вал мотора должны регулироваться в зависимости от необходимой частоты оборотов электромотора. Регулятором в этом механизме выступает редуктор. Сложность конструкции заключается в том, что при повышении ветра необходим понижающий редуктор, а при понижении ветра — повышающий.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги, исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.

Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

Просчитать, учесть и компенсировать изменения тока, которые происходят случайно, к сожалению, нереально, поэтому устройству характерна нестабильная работа.