Как понизить амперы блоке питания. как повысить силу тока, не изменяя напряжения? от чего зависит сила тока

Содержание

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Для чего использовать преобразователь частоты переменного тока VFD?

Сокращение потребления энергии и затрат на лектроэнергию.

Если у вас есть применение, которое не требует постоянной работы на максимальной скорости, вы можете сократить энергозатраты, управляя двигателем с помощью частотно-регулируемого привода, что является одним из преимуществ преобразователей частоты. Преобразователь частоты переменного тока VFD позволяет вам сопоставлять скорость электродвигателя с требуемой нагрузкой. На сегодняшний момент нет другого, более эффективного способа управления электродвигателем переменного тока, который позволит выполнить это.

На сегодняшний момент потребление электроэнергии электродвигателями составляет более 65% мирового энергопотребления. Оптимизация систем управления двигателем путем применения частотных преобразователей способна добится снижения энергопотребления в некоторых случаях до 70%. Кроме того, использование преобразователя частоты улучшает качество продукции и снижает издержки производства.

Увеличение производства за счет более жесткого контроля технологических процессов.

Управляя двигателями с максимальной эффективностью, в технологическом цикле будет происходить меньшее количество ошибок, меньше простоев, что в свою очередь обеспечит более высокий уровень дохода. Так, например, на конвейерах и ремнях с помощью частотного регулирования вы устраняете рывки при запуске, позволяя использовать сквозной старт.

Увеличьте срок службы оборудования и уменьшите обслуживание.

Советуем изучить — Технология монтажа концевых муфт и заделок внутренней установки до 10 кв

Ваше оборудование будет работать дольше и иметь меньше времени простоя из-за технического обслуживания благодаря оптимальному управлению частотой и напряжением. Частотный преобразователь также будет обеспечивать оптимальную защиту электродвигателя от электротермические перегрузок, пропадания фазы, перенапряжения и т. д. Также чатотный преобразователь обеспечит плавный запуск двигателя устранив возможные ударные нагрузки.

Оригинал статьи: What is a Variable Frequency Drive?

Как повысить силу электрического тока. Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер. Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза. Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:

Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.

При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения.

Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника.

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди.

Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике.

Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий. Следующий материал – это железо.

Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется.

Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

Как повысить силу тока в цепи

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств

Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения. Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Статьи, Схемы, Справочники

Стабилизированный источник питания 3 вольт на транзисторе КТЕ. В данной статье рассмотрим вариант нетрадиционного использования операционного усилителя. При выходном напряжении 3 вольт схема обеспечивает ток в нагрузке до мА, коэффициент стабилизации около , ток короткого замыкания почти 1 ампер. Стабилизированный лабораторный блок питания 12 вольт. Описываемый в статье лабораторный источник питания обеспечивает стабилизацию как тока, так и напряжения. Его сердцем является электронный стабилизатор — именно он отвечает за все выходные параметры устройства.

Поиск данных по Вашему запросу:

Способы увеличения частоты тока

Наиболее популярным на сегодняшний день методом увеличения (или уменьшения) частоты тока является применение частотного преобразователя. Частотные преобразователи позволяют получить из однофазного или трехфазного переменного тока промышленной частоты (50 или 60 Гц) ток требуемой частоты, например от 1 до 800 Гц, для питания однофазных или трехфазных двигателей.

Наряду с электронными частотными преобразователями, с целью увеличения частоты тока, применяют и электроиндукционные частотные преобразователи, в которых например асинхронный двигатель с фазным ротором работает частично в режиме генератора. Еще есть умформеры — двигатели-генераторы, о которых также будет рассказано в данной статье.

Электронные преобразователи частоты

Электронные преобразователи частоты позволяют плавно регулировать скорость синхронных и асинхронных двигателей благодаря плавному повышению частоты на выходе преобразователя до заданного значения. Наиболее простой подход обеспечивается заданием постоянной характеристики V/f, а более прогрессивные решения используют векторное управление.

Частотные преобразователи, обычно, включают в себя выпрямитель, который преобразует переменный ток промышленной частоты в постоянный; после выпрямителя стоит инвертор, в простейшем виде — на базе ШИМ, который преобразует постоянное напряжение в переменный ток нагрузки, причем частота и амплитуда задаются уже пользователем, и эти параметры могут отличаться от сетевых параметров на входе в большую или в меньшую сторону.

Выходной блок электронного преобразователя частоты чаще всего представляет собой тиристорный или транзисторный мост, состоящий из четырех или из шести ключей, которые и формируют требуемый ток для питания нагрузки, в частности — электродвигателя. Для сглаживания помех в выходном напряжении, на выходе добавляют EMC-фильтр.

Как говорилось выше, электронный преобразователь частоты использует для своей работы в качестве ключей тиристоры или транзисторы. Для управления ключами применяется микропроцессорный модуль, служащий контроллером, и одновременно выполняющий ряд диагностических и защитных функций.

Между тем, частотные преобразователи бывают все таки двух классов: с непосредственной связью, и с промежуточным звеном постоянного тока. При выборе между этими двумя классами взвешивают достоинства и недостатки того и другого, и определяют целесообразность того или иного для решения насущной задачи.

С непосредственной связью

Преобразователи с непосредственной связью отличаются тем, что в них используется управляемый выпрямитель, в котором группы тиристоров поочередно отпираясь коммутируют нагрузку, например обмотки двигателя, прямо к питающей сети.

В результате на выходе получаются кусочки синусоид сетевого напряжения, а эквивалентная частота на выходе (для двигателя) становится меньше сетевой, в пределах 60% от нее, то есть от 0 до 36 Гц для 60 Гц входа.

Такие характеристики не позволяют в широких пределах варьировать параметры оборудования в промышленности, от того и спрос на данные решения низок. Кроме этого незапираемые тиристоры сложно управляются, стоимость схем становится выше, да и помех на выходе много, требуются компенсаторы, и как следствие габариты высокие, а КПД низкий.

С звеном постоянного тока

Гораздо лучше в этом отношении частотные преобразователи с ярко выраженным звеном постоянного тока, где сначала переменный сетевой ток выпрямляется, фильтруется, а затем снова схемой на электронных ключах преобразуется в переменный ток нужной частоты и амплитуды. Здесь частота может быть значительно выше. Безусловно, двойное преобразование несколько снижает КПД, зато выходные параметры по частоте как раз соответствуют требованиям потребителя.

Чтобы на обмотках двигателя получить чистый синус, используют схему инвертора, в котором напряжение нужной формы получается благодаря широтно-импульсной модуляции (ШИМ). Электронными ключами здесь служат запираемые тиристоры или IGBT-транзисторы.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать. Наиболее актуальными параметрами у трансформаторов являются:

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  • UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью дросселя, полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта

Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

Наверняка вы не знаете:

  • Что такое линейное и фазное напряжение
  • Как сделать 380В из 220
  • Что такое ограничитель перенапряжения

Опубликовано: 03.10.2018 Обновлено: 03.10.2018

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает

Обратите внимание на рисунок ниже

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии

Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Все про розетки с таймером, устройство, настройка, популярные модели, какую выбрать

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Р2 = 100 ватт

Р2 = U2  x I2

где:

U2 = 18 вольт;

I2 – ток;

Допустимый ток во вторичной обмотке будет равен:

I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.