Стабилизатор анодного напряжения на полевом транзисторе

Содержание

Стабилизаторы тока на микросхемах

Применение такой элементной базы несколько увеличивает себестоимость проекта. Однако использование качественных микросхем обеспечивает хорошие стабилизационные характеристики в широком диапазоне входных параметров. С учетом хороших показателей эффективности можно рассчитывать на небольшое потребление электроэнергии.

TL431

В левой части рисунка показана схема типового подключения микросхемы TL 431 (DA1). Отмечена главная функция – поддержание напряжения 2,5 V на контрольном резисторе.

Такая конструкция пригодна для последовательного подключения нескольких десятков светодиодов суммарной мощностью 12-14 Вт. Силовые компоненты подбирают с учетом реальных потребностей. В представленном примере падение напряжения на транзисторе составит 25-35V. Рассеивается не более 1,75 Вт. В таком варианте радиатор не требуется.

Резистор на входе (R3) предотвращает повреждение конденсатора при включении блока в сеть. Ток в нагрузке ограничивает безопасным уровнем сопротивление R3. При выборе светодиодов специалисты рекомендуют делать запас по мощности, чтобы продлить срок службы одновременно с уменьшением тепловыделения.

LM7805, LM7812

В представленном ниже варианте схемотехники следует повысить входное напряжение. Его уровень должен быть больше на 2,5-3V, чем номинал стабилизации данной микросхемы.

В примере показан стабилизатор напряжения постоянного тока, который рассчитан на 9-11 Вт подключаемой нагрузки.

LM317

При подключении нагрузки 28-30 Вт эта микросхема обеспечивает стабилизацию тока 100 мА. Диапазон входного напряжения – от 207 до 240 V.

В таблице на рисунке представлены значения регулировочного резистора, соответствующие определенным выходным параметрам.

При выборе подходящей схемы следует учесть в комплексе:

  • минимальные и максимальные напряжения в цепи питания;
  • точность стабилизации;
  • эффективность устройства;
  • сложность изготовления определенной конструкции собственными руками;
  • стоимость комплектующих деталей, расходных материалов.

Заранее рекомендуется подготовить перечень инструментов, приспособлений, измерительных приборов. Аккуратное выполнение рассмотренных выше инструкций поможет создать функциональный стабилизатор без ошибок и лишних затрат.

Простой СН, сделанный своими руками

Параметрический стабилизатор напряжения

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.


LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.


Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.


Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.


СН для бортовой сети

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.


Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.


КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Скачать печатную плату стабилизатора на LM317

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Электронные ключи

Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

УГО идеальных ключей показаны на рисунке:

Ключи, работающие на замыкание и размыкание соответственно.

Ключевой режим характеризуется двумя состояниями: «включено»/»выключено».

Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

В реальных ключах токи и падения напряжения, соответствующие состояниям «включено»/»выключено», зависят от типа и параметров применяемых диодов, транзисторов, тиристоров и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивностей коммутируемой цепи.

Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin. Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

  • Сопротивлениями ключа в открытом и закрытом состояниях;
  • Быстродействием – временем перехода ключа из одного состояния в другое;
  • Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  • Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  • Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  • Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.

Модель
КТ829В 750 8 А 60 В
BDX54C 750 8 А 100 В

В остальном работа ключа остаётся такой же.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Список деталей для конструкции БП

  • Операционный усилитель LM358
  • Стабилизатор 7812
  • Mosfet IRF4905
  • Потенциометры
  • Измеритель LED I, U
  • Вольтметр цифровой
  • Импульсный преобразователь LM2596

Радиаторы, силовой трансформатор и мелкие пассивные элементы есть у каждого, поэтому стоимость будет однозначно ниже готового БП. Вот так выглядит готовая конструкция — передняя и задняя панели выполнены из алюминиевого листа толщиной 2 мм. Фронт был выгравирован на специальном оборудовании.

Преимуществами конструкции являются малая цена исполнения, простота схемы, надежность. Недостатками небольшой максимальный ток, не самая лучшая стабилизация напряжения. Скорость срабатывания ограничителя тока не проверялась, но как правило этого достаточно в радиоделе.

Основные характеристики

Мощность, отдаваемая в нагрузку, у качественных стабилизаторов эта характеристика постоянна и составляет 100% во всём рабочем диапазоне входного напряжения; в дешёвых моделях она будет падать пропорционально его снижению и может достигать 50-60% от номинала при значениях в сети 150-170 вольт. Запас по мощности должен составлять 25-30% от максимальной подключенной нагрузки.

Диапазон входного напряжения. Наряду с точностью стабилизации, является важнейшей характеристикой стабилизатора. Состоит из двух категорий:

  • рабочий — когда отклонения питающей электросети находятся в допустимых пределах, при которых на выходе обеспечивается заявленная величина стабилизации, например 220±5%;
  • предельный — когда стабилизатор переходит в режим компенсации сетевого напряжения, при котором его значения на выходе могут отличаться от номинала 220 В в большую или меньшую стороны до 15-18%. При превышении предельного диапазона, он обесточит нагрузку, сам при этом оставаясь подключенным к сети для её контроля, и при её возвращении обратно в рабочий, самостоятельно опять подаст напряжение в подключенные приборы.

Точность стабилизации выходного напряжения гарантируется только в рабочем входном диапазоне и может составлять 0,5-7% в зависимости от модели стабилизатора.

Перегрузочная способность — это устойчивость к кратковременным перегрузкам от электроприборов, имеющих высокие пусковые токи (например, электродвигатель погружного насоса, холодильника и т.п.).

Защита от перегрузки и короткого замыкания на выходе. В случае перегрузки стабилизатора напряжения, когда с него начинает сниматься мощность значительно превышающая номинальную в течение определённого периода времени (от 0,1 сек. до 1 мин. или немного более), срабатывает система защиты (время срабатывания зависит от величины перегрузки), которая отключит стабилизатор и тем самым предотвратит его поломку. Если в нём заложен функционал однократного повторного включения, то он снова включится в работу спустя некоторое время. Если при повторном включении перегрузка не устранилась, то он отключится окончательно, и уже потребуется вмешательство человека для выявления и устранения причин перегрузки или короткого замыкания.

Выходной контактор. В случае аварии стабилизатора или резкого импульсного скачка входного напряжения, он мгновенно отключит электроприборы и предотвратит их перегорание.

Коррекция выходного напряжения. Наличие в некоторых моделях стабилизаторов возможности задания специальных значений на выходе в диапазоне 210-230 вольт, что помогает решить одновременно несколько проблем:

  • возможно установить западный стандарт 230В для импортных электроприборов, без подобной функции возможны сбои в их работе;
  • для ламп накаливания можно установить 210 вольт, что значительно увеличит срок их службы, световой же поток останется в пределах, заявленных производителем.

Автоматическое включение стабилизатора при возврате входного напряжения в рабочий диапазон. Т.к. стабилизатор отключает нагрузку в случае выхода параметров электросети за предельные значения, он должен также автоматически и подключать её, если входное напряжение вернулось в рабочие пределы, иначе придётся это делать вручную.

Наличие на входе и выходе стабилизатора напряжения фильтров подавления импульсных помех. Это полезная функция, которая защитит электроприборы от помех в радиочастотном диапазоне.

Климатическое исполнение. Большинства выпускаемых стабилизаторов напряжения имеют защиту IP20 и предназначены для установки в помещениях с температурой окружающей среды +5…+35°С, с относительной влажностью воздуха 35-90%, с атмосферой, не содержащей пыли, водяных брызг и т.д. Если температура будет опускаться ниже 0°С, потребуется установка в шкаф с подогревом. Начиная с 2012 года ведущие производители начали выпуск стабилизаторов со специальной климатической обработкой внутренних узлов, рассчитанных на температуру эксплуатации от -40 до +40°С.

Гарантийный и реальный срок службы. Ведущие производители дают 5-6 летнюю гарантию на свои стабилизаторы напряжения, а общий срок их службы с неизменностью рабочих характеристик составляет не менее 12-13 лет.

Стоимость. Косвенный показатель качества и надёжности — каковым будет, например, инверторный стабилизатор напряжения Штиль ИнСтаб IS8000 (РРЦ 51 280 руб.), как наиболее предпочтительный вариант по характеристкам и стоимости для большинства применений.

Принцип стабилизации тока

Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.

Требования к управляющему элементу

Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:

  • ток в контрольной цепи поддерживается с определенной точностью;
  • следует компенсировать перепады потребляемой мощности;
  • корректирующие изменения должны выполняться достаточно быстро;
  • для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.

Суть стабилизации

Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.

Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается

Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.

Увеличение стабильности

При работе часть энергии рассеивается, происходит нагрев платы и компонентов схемы, параметры плывут, а главное изменяется напряжение насыщения ( UБЭ) транзистора VT2, те самые ~0,7 В будут изменяться, что приведёт к изменению выходного тока.

ТКН (Температурный Коэффициент Напряжения) pn-перехода транзистора отрицательный, при повышении температуры UБЭ будет уменьшаться. Для термостабилизации вводим дополнительно элемент с положительным ТКН – стабилитрон (с Uст > 6.5 В), тогда при нагреве напряжение на одном компоненте (VT2) будет уменьшаться, а на другом (D1) увеличиваться, таким образом получается компенсация. В совершенстве ТКН обоих приборов должен быть равен по величине и противоположным по знаку, а нагрев происходить одинаково (именно поэтому они расположены рядом на плате).

Также добавлен ещё один транзистор VT3, который выступает источником тока для VT2, что придаст ещё большей стабильности, т.к. при изменении напряжения питания в определённом диапазоне ток базы VT2 почти не будет изменяться.

Способы регулировки тока

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.

Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками

Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.