Принцип работы термистора

Содержание

Устройство и виды

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается)

Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

Основные характеристики:

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.
  • ТКС.

Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

Зависимость сопротивления и температуры

Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой

R(T) = A exp(b/T)

где A, b – постоянные, зависящие от свойств материала и геометрических размеров.

Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта

Будет интересно Как прочитать обозначение (маркировку) резисторов

1/T = a+b(lnR)+c(lnR)3

где T – температура в К;

R – сопротивление в Ом;

a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.


Стеклянный термистор.

Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:

  • a = 1,03 10-3
  • b = 2,93 10-4
  • c = 1,57 10-7


Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.

Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.

В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:

1/T = a+b(lnR)+c(lnR)2 + d(lnR)3

Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.

Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток

При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК)

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

  1. Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
  2. Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.


Устройство термистора.

Краткие сведения из теории о терморезисторах

Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры. Удельная электрическая проводимость полупроводников:

В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.

Подвижность носителей при нагревании изменяется сравнительно слабо, а концентрация очень сильно. Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:

где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника.

Экспериментально коэффициент температурной чувствительности определяют по формуле:

где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2. 

Рис. 1 График зависимости сопротивления полупроводникового резистора от температуры.

Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный коэффициент и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение  аR приводится для температуры 20 оС.

Терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времени т – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е раз. 

Если терморезистор, имеющий определённую температуру, поместить в среду с иной температурой, то его температура будет изменяться с течением времени по показательному закону:

С остыванием терморезистора сопротивление его увеличивается (рис. 2).

Рис 2. Процесс изменения температуры и сопротивления терморезистора при его остывании

Как работает PTC с физико-химической точки зрения

Терморезистор типа PTC повышает свое сопротивление (на схемах обозначается R, в Омах), при увеличении t°; у термистора NTC алгоритм тот же, но наоборот: при росте первой, вторая величина падает.

Главная особенность терморезистора — максимальная чувствительность R материала к изменениям t°. Если нагрева нет, то атомы расположены ровно, выстроенные длинными линиями. При росте тепла число транспортировщиков заряда становится большим, и чем больше, тем лучше проводимость.

Кривая t°/R нелинейная, наиболее ярко свойства проявляются при −90…+130° C.

Свойства ТР создаются путем сравнения режима t° с характеристиками используемых в детали сплавов, являющихся полупроводниками. Применяют составы чрезвычайно чувствительные к температуре.

При прохождении тока появляется электрополе, подталкивающее электроны, ударяющиеся об атомы, так они затормаживаются. При высоких температурах движение атомов интенсивнее, исходная частичка быстрее взаимодействует, создавая дополнительное сопротивление. После охлаждения валентные уровни электронов станут низкими, перейдут в спокойное состояние, частички будут меньше перемещаться, перестанут повышать число Ом.

Какие параметры влияют на подбор терморезисторов

Рассмотрим, какие параметры надо определить и учесть при выборе PTC, позистор, терморезистор с положительным коэффициентом.

Габариты. Деталь должна поместиться на плате, не мешать иным деталям.

Сопротивление, оно же номинал, RT, в Омах. Указывается на элементе на его маркировке вместе с температурой в Цельсиях или Кельвинах. Надо также читать таблицы данных и спецификацию детали. Например, если ТР рассчитан на функционирование при −100…+200° C, режим для окружающих условий использования принимают как +20…+25° C;

Временная переменная температуры в сек. Отражает тепловую инерционность: период, необходимый для изменения t° теплового резистора на 63% от разницы t° на нем и окружающей среды. Обычно принимается равным +100° C;

ТКС он же TCR (в % на 1 градус С°), αR или αRT. Это основная характеристика — тепловой (термический) коэффициент сопротивления. Прописывается для той же t°, что и «холодное» R. Цифры значения могут быть с «+», «–» или «±», что показывает, в какую сторону учитывают изменения температуры (это не отклонения точности). По данной характеристике выделяют определенные группы терморезисторов (А, Б, В и так далее).

Предельная интенсивность рассеивания Pmax, Вт. Порог, до которого нет необратимых трансформаций в детали. По этой характеристике главное исключить ситуации, когда tmax превышает предел, Pmax.

Tmax — наибольшее значение, при котором свойства детали определенное время остаются неизменными (эти две составляющие устанавливаются изготовителем).

Коэффициенты G и H. Данные характеристики зависимы от свойств используемого сплава, нюансов теплообмена между ТР и средой. Характеристики взаимосвязанные, что отображает уравнение G=H/100а:

  • G. Энергочувствительность в Вт/%×R. Означает сколько надо рассеять Ватт для понижения R (Ом) на 1 процент;
  • H. Рассеивание (в Вт на 1° C). Это мощность, нивелируемая деталью при разнице t° ее режима и среды на 1°.

Теплоемкость (Дж на 1° C), «C» — количество тепла для нагрева терморезистора на 1°.

Временная постоянная τ = отношению между C и H. Подбирая изделие, надо учесть промежуток температурного сопротивления и кратность колебаний R на участке положительного ТКС.

Для правильного выбора позисторов надо изучить все варианты терминологии: другие и некоторые вышеуказанные позиции трактуются также следующим образом:

Температура и т. Кюри:

Базовые свойства позисторов

При расчете терморезисторов потребуется оценить следующее составляющие:

  • вольтамперная (ВАХ). Отображается кривой графика, показывающей, как зависит напряжение на приборе, участке цепи от тока, пропускаемого ТР, тепловое равновесие с окружающими условиями. Кривые PTC и NTC отличаются;
  • температурная. Это диаграмма зависимости значения Ом от t°. Координатная Линия R — это первые с принципом отображения десятикратно (10×), а по горизонтальной, температурной, оси пропускается промежуток 0…223 К. Термические резисторы типа PTC это позисторы, термисторы с положительным коэффициентом изменений при росте t°;
  • подогревная. Применяется для косвенных ТР. Покажет, как зависит сопротивление (берется тоже десятикратно, 10×) элемента от мощностей на нем.

Что такое термопара, ее устройство

ТП регламентируются ГОСТами 6616, Р 8.585 и МЭК 62460, 60584. Пункт 2.2 последнего дает определение сенсора: пара разносплавных проводников с соединением (спайкой) на одном конце для инициирования термоэлектрического эффекта для замеров t° этим сегментом. ТП измеряет точкой соединения (головкой) своих электродов, так называемой «горячей спайкой».

Надо понимать, что устройство термопары может представлять собой неприглядные отрезки спаянных на одном их окончании тоненьких проводков, но, несмотря на это, сенсор чрезвычайно эффективный. Часто содержит драгметаллы.

Устройство:

  • два проводника, с одного конца спаянные, реже — скрученные. Это горячий спай, чувствительный сегмент, проводящий замеры;
  • другие концы — место, где нет нагрева, соединения с удлиняющими проводками, холодный спай. Они подсоединяются на приемник показателей.

Создается замкнутая цепь, если в ее разрыв подсоединить гальванометр, микровольтметр, мультиметр, то они покажут возникшую там термоЭДС в несколько мили-, микровольт. Значение зависит от степени нагрева на соединении проволоки и от показателя температуры, на сегменте, где такового нет.

То есть величина ЭДС зависит от разности t° между спаями — холодным и горячим и от термоэлектросвойств сплавов самих проводников.

Если горячую точку соединения подогреть, то между их несоединенными (холодными) концами появится разность потенциалов.

Далее, преобразователь отдельный или на блоке контроля обслуживаемого приборе исчисляет температуру, так как сила ЭДС и она взаимозависимые, затем переводит полученные данные в цифры и/или в команды для управления.

Виды по типу нагрева

Нагрев может быть таких типов (ему соответствует 2 типа термических резисторов):

  • прямой. Температура самого элемента меняется под воздействием тока на нем или воздуха окружающей среды (климатические условия, среда помещения, прибора);
  • косвенный. Температура повышается из-за элементов, окружающих датчик, находящихся непосредственного близко около него. При этом детали никак не связаны. Сопротивление полупроводника обусловлено трансформациями, модуляциями мощности, иных характеристик тока на ближайших элементах. Изделия с косвенным принципом применяются, например, в комбинированных мультиметрах.

Измерение сопротивления с помощью Arduino

Теперь, когда мы выбрали метод построения кривой, мы должны выяснить, как реально измерить сопротивление с помощью Arduino, прежде чем мы сможем передать информацию о сопротивлении в β-уравнение. Мы можем сделать это используя делитель напряжения:

Делитель напряжения для измерения сопротивления термистора

Это будет наша схема взаимодействия с термистором. Когда термистор определит изменение температуры, это отразится на выходном напряжении.

Теперь, как обычно, мы используем формулу для делителя напряжения.

\

Но нам неинтересно выходное напряжение Vвыход, нас интересует сопротивление термистора Rтермистор. Поэтому мы выразим его:

\

Это намного лучше, но нам необходимо измерить наше выходное напряжение, а также напряжение питания. Так как мы используем встроенный АЦП Arduino, то можем представить напряжение, как числовое значение на определенной шкале. Итак, конечный вид нашего уравнения показан ниже:

\

Это работает потому, что не имеет значения, как мы представляем напряжение (в вольтах или в цифровых единицах), эти единицы сокращаются в числителе и знаменателе дроби, оставляя безразмерное значение. Затем мы умножаем его на сопротивление, чтобы получить результат в омах.

Dmax у нас будет равно 1023, так как это самое большое число, которое может выдать наш 10-разрядный АЦП. Dизмеренное – это измеренное значение аналого-цифровым преобразователем, которое может быть в диапазоне от нуля до 1023.

Всё! Теперь можно приступить к сборке!

Где применяются

Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

Что такое резистор и для чего он нужен?

Что такое триггер, для чего он нужен, их классификация и принцип работы

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.


Как проверить транзистор мультиметром

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

Как работает


Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен. С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется. Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается. При нагреве NTC-термистора его сопротивление уменьшается.


Основные параметры и характеристики терморезисторов с отрицательным ТКС.

Сопротивление позистора соответствует номинальному Rн, указанному в справочной документации обычно при температуре 25 гр. Цельсия, реже при 20. В начале нагрева PTC-термистора его сопротивление будет незначительно уменьшаться до некоторого минимального значения Rмин. При дальнейшем нагреве до некоторой температуры Tref сопротивление позистора станет незначительно увеличиваться.

Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.

Принцип работы

Сплав датчика изменяет токопроводимость при различной t°. Сопротивление при ее росте падает, при понижении — растет. Меняются электропараметры, что и регистрирует схема.

Микроконтроллер обслуживаемого прибора на основе полученных данных, учитывая спецификацию детектора, вычисляет сдвиги t°. Затем подает сигнал исполнительному узлу (реле, системе нагревателя, охлаждения) для действий при том или ином уровне t°.

Пример: учитывая описанный алгоритм на входе компаратора термостата, настроенного по температурной характеристике, происходит управление напряжением, оно претерпевает изменения.

Сами по себе датчик NTC не электронное устройство, он только фиксирует. В основе — нелинейная зависимость сопр. резистора от t° среды. Схема работы может быть и проще: простой вывод на табло значений или реле может реагировать сразу.

Сенсоры чувствительные к электромагнитным излучениям, полям, поэтому их экранируют или монтируют на отдалении от источников таких явлений (силовые провода).

Уравнение параметра B или β [ править ]

Термисторы NTC также могут быть охарактеризованы уравнением параметра B (или β ), которое по сути является уравнением Стейнхарта – Харта с , и ,
азнак равно1Т(1B)перр{\ displaystyle a = 1 / T_ {0} — (1 / B) \ ln R_ {0}}бзнак равно1B{\ displaystyle b = 1 / B}cзнак равно{\ displaystyle c = 0}

1Тзнак равно1Т+1Bперрр,{\displaystyle {\frac {1}{T}}={\frac {1}{T_{0}}}+{\frac {1}{B}}\ln {\frac {R}{R_{0}}},}

где температуры указаны в градусах Кельвина , а R — сопротивление при температуре T (25 ° C = 298,15 K). Решение для доходности
R

R=ReB(1T−1T){\displaystyle R=R_{0}e^{B\left({\frac {1}{T}}-{\frac {1}{T_{0}}}\right)}}

или, альтернативно,

R=r∞eBT,{\displaystyle R=r_{\infty }e^{B/T},}

где .
r∞=Re−BT{\displaystyle r_{\infty }=R_{0}e^{-B/T_{0}}}

Это можно решить для температуры:

T=Bln⁡(Rr∞).{\displaystyle T={\frac {B}{\ln(R/r_{\infty })}}.}

Уравнение B- параметра также можно записать как . Это может быть использовано для преобразования функции температуры сопротивления против термистора в линейную функцию VS. . Затем средний наклон этой функции даст оценку значения параметра
B.
ln⁡R=BT+ln⁡r∞{\displaystyle \ln R=B/T+\ln r_{\infty }}ln⁡R{\displaystyle \ln R}1T{\displaystyle 1/T}