Содержание
5.6 Электрические характеристики для LM2904
В указанном диапазоне температур, VCC = 5 В (если не указано иное)
Параметр | Условия(1) | TA(2) | LM2904 | Ед. изм. | ||||
---|---|---|---|---|---|---|---|---|
MIN | TYP(3) | MAX | ||||||
VIO | Входное напряжение компенсации смещения нуля | VCC = от 5 В до MAX, VIC = VICR(min), VO = 1.4 В |
Без A суффикса в маркировке | 25°C | 3 | 7 | мВ | |
Весь диапазон | 10 | |||||||
С А суффиксом в маркировке | 25°C | 1 | 2 | |||||
Весь диапазон | 4 | |||||||
αVIO | Средний температурный коэффициент входного напряжения смещения нуля | Весь диапазон | 7 | мкВ/°C | ||||
IIO | Входной ток компенсации смещения нуля | VO = 1.4 В | Без V суффикса в маркировке | 25°C | 2 | 50 | нА | |
Весь диапазон | 300 | |||||||
С V суффиксом в маркировке | 25°C | 2 | 50 | |||||
Весь диапазон | 150 | |||||||
αIIO | Средний температурный коэффициент входного тока смещения нуля | Весь диапазон | 10 | пA/°C | ||||
IIB | Входной ток смещения | VO = 1.4 В | 25°C | -20 | -250 | нA | ||
Весь диапазон | -500 | |||||||
VICR | Диапазон входного синфазного напряжения | VCC = от 5 В до MAX | 25°C | от 0 до VCC — 1.5 |
В | |||
Весь диапазон | от 0 до VCC — 2 |
|||||||
VOH | Высокий уровень выходного напряжения | RL ≥ 10 кОм | 25°C | VCC — 1.5 | В | |||
VCC = MAX, Без V суффикса |
RL = 2 кОм | Весь диапазон | 22 | |||||
RL ≥ 10 кОм | Весь диапазон | 23 | 24 | |||||
VCC = MAX С V суффиксом |
RL = 2 кОм | Весь диапазон | 26 | |||||
RL ≥ 10 кОм | Весь диапазон | 27 | 28 | |||||
VOL | Низкий уровень выходного напряжения | RL ≤ 10 кОм | Весь диапазон | 5 | 20 | мВ | ||
AVD | Большой сигнал усиления дифференциального напряжения | VCC = 15 В, VO = от 1 В до 11 В, RL ≥ 2 кОм |
25°C | 25 | 100 | В/мВ | ||
Весь диапазон | 15 | |||||||
CMRR | Коэффициент ослабления синфазного сигнала | VCC = от 5 В до MAX, VIC = VICR(min) |
Без V суффикса | 25°C | 50 | 80 | dB | |
С V суффиксом | 25°C | 65 | 80 | |||||
kSVR | Коэффициент подавления помех по питанию (ΔVCC /ΔVIO) |
VCC = от 5 В до MAX | 25°C | 65 | 100 | dB | ||
VO1/ VO2 | Переходное затухание | f = от 1 кГц до 20 кГц | 25°C | 120 | dB | |||
IO | Выходной ток | VCC = 15 В, VID = 1 В, VO = 0 |
Источник | 25°C | -20 | -30 | мA | |
Весь диапазон | -10 | |||||||
VCC = 15 В, VID = -1 В, VO = 15 В |
Приемник | 25°C | 10 | 20 | ||||
Весь диапазон | 5 | |||||||
VID = -1 В, VO = 200 мВ | Без V суффикса | 25°C | 30 | мкA | ||||
С V суффиксом | 25°C | 12 | 40 | |||||
IOS | Ток короткого замыкания на выходе | VCC около 5 В, VO = 0, GND около ?5 V | 25°C | ±40 | ±60 | мA | ||
ICC | Потребляемый ток (четыре усилителя) |
VO = 2.5 В, Без нагрузки | Весь диапазон | 0.7 | 1.2 | мA | ||
VCC = MAX, VO = 0.5 VCC, Без нагрузки | Весь диапазон | 1 | 2 |
(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.
(2) Весь диапазон это температуры от -55°C до 125°C для LM158, от -25°C до 85°C для LM258, и от 0°C до 70°C для LM358, и от -40°C до 125°C для LM2904.
(3) Все типичные значения для температуры TA = 25°C
Корпус / Упаковка / Маркировка
LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pin | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Package Type | D | D | D | DGK | DGK | D | D | D | D | P | P | P | PS | PS | PW | PW | PW | PW | PW | PW | PW |
Industry STD Term | SOIC | SOIC | SOIC | VSSOP | VSSOP | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP | PDIP | SOP | SOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP |
JEDEC Code | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDIP-T | R-PDIP-T | R-PDIP-T | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G |
Package QTY | 75 | 75 | 75 | 2500 | 2500 | 2500 | 2500 | 2500 | 2500 | 50 | 50 | 50 | 2000 | 150 | 150 | 2000 | 2000 | 2000 | 2000 | ||
Carrier | TUBE | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | TUBE | TUBE | TUBE | LARGE T&R | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | ||
Width (мм) | 3.91 | 3.91 | 3.91 | 3 | 3 | 3.91 | 3.91 | 3.91 | 3.91 | 6.35 | 6.35 | 6.35 | 5.3 | 5.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 |
Length (мм) | 4.9 | 4.9 | 4.9 | 3 | 3 | 4.9 | 4.9 | 4.9 | 4.9 | 9.81 | 9.81 | 9.81 | 6.2 | 6.2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Thickness (мм) | 1.58 | 1.58 | 1.58 | 0.97 | 0.97 | 1.58 | 1.58 | 1.58 | 1.58 | 3.9 | 3.9 | 3.9 | 1.95 | 1.95 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Pitch (мм) | 1.27 | 1.27 | 1.27 | 0.65 | 0.65 | 1.27 | 1.27 | 1.27 | 1.27 | 2.54 | 2.54 | 2.54 | 1.27 | 1.27 | 0.65 | 0.65 | .65 | 0.65 | 0.65 | 0.65 | 0.65 |
Max Height (мм) | 1.75 | 1.75 | 1.75 | 1.07 | 1.07 | 1.75 | 1.75 | 1.75 | 1.75 | 5.08 | 5.08 | 5.08 | 2 | 2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Mechanical Data |
Схема преобразователя напряжение-ток
Схема приведена на рисунке и немного похожа на ту, которая была описана в конструкции неинвертирующего усилителя. Но здесь добавлен биполярный транзистор. На выходе сила тока оказывается прямо пропорциональна напряжению на входе операционного усилителя.
И в то же время сила тока обратно пропорциональна сопротивлению резистора R1. Если описать это формулами, то выглядит следующим образом:
I=U(in)/R.
При величине сопротивления R1=1 Om, на каждый 1V напряжения, прикладываемого ко входу, на выходе будет 1А тока. Схема включения LM358 в режиме преобразователя напряжения в ток используется радиолюбителями для конструирования зарядных устройств.
Параметры
Parameters / Models | LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Additional Features | N/A | N/A | |||||||||||||||||||
Approx. Price (US$) | 0.07 | 1ku | 0.07 | 1ku | |||||||||||||||||||
Архитектура | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar | Bipolar |
CMRR(Min), дБ | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | ||
CMRR(Min)(dB) | 65 | 65 | |||||||||||||||||||
CMRR(Typ), дБ | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | ||
CMRR(Typ)(dB) | 80 | 80 | |||||||||||||||||||
Основные особенности | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | Cost Optimized | ||
GBW(Typ), МГц | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | ||
GBW(Typ)(MHz) | 0.7 | 0.7 | |||||||||||||||||||
Input Bias Current(Max), pA | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | 150000 | ||
Input Bias Current(Max)(pA) | 150000 | 150000 | |||||||||||||||||||
Iq per channel(Max), мА | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | ||
Iq per channel(Max)(mA) | 0.6 | 0.6 | |||||||||||||||||||
Iq per channel(Typ), мА | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | ||
Iq per channel(Typ)(mA) | 0.35 | 0.35 | |||||||||||||||||||
Количество каналов | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||
Number of Channels(#) | 2 | 2 | |||||||||||||||||||
Offset Drift(Typ), uV/C | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ||
Offset Drift(Typ)(uV/C) | 7 | 7 | |||||||||||||||||||
Рабочий диапазон температур, C | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | от 0 до 70 | ||
Operating Temperature Range(C) | 0 to 70 | 0 to 70 | |||||||||||||||||||
Output Current(Typ), мА | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | ||
Output Current(Typ)(mA) | 30 | 30 | |||||||||||||||||||
Package Group | SOIC | SOIC | SOIC | VSSOP | VSSOP | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP | PDIP | SO | SO | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP |
Package Size: mm2:W x L, PKG | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) | 8VSSOP: 15 mm2: 4.9 x 3(VSSOP) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | 8SOIC: 29 mm2: 6 x 4.9(SOIC) | See datasheet (PDIP) | See datasheet (PDIP) | See datasheet (PDIP) | 8SO: 48 mm2: 7.8 x 6.2(SO) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) | ||
Package Size: mm2:W x L (PKG) | See datasheet (PDIP) | See datasheet (PDIP) | |||||||||||||||||||
Rail-to-Rail | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- | In to V- |
Rating | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog | Catalog |
Slew Rate(Typ), V/us | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | ||
Slew Rate(Typ)(V/us) | 0.3 | 0.3 | |||||||||||||||||||
Total Supply Voltage(Max), +5V=5, +/-5V=10 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | ||
Total Supply Voltage(Max)(+5V=5, +/-5V=10) | 32 | 32 | |||||||||||||||||||
Total Supply Voltage(Min), +5V=5, +/-5V=10 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
Total Supply Voltage(Min)(+5V=5, +/-5V=10) | 3 | 3 | |||||||||||||||||||
Vn at 1kHz(Typ), нВ/rtГц | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | ||
Vn at 1kHz(Typ)(nV/rtHz) | 40 | 40 | |||||||||||||||||||
Vos (Offset Voltage @ 25C)(Max), мВ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ||
Vos (Offset Voltage @ 25C)(Max)(mV) | 7 | 7 |
Какой транзистор выбрать
При использовании TIP31 и TIP32 транзисторы моего прототипа работали без теплоотводов в диапазоне напряжений питания от 9 В до 21 В. Эти комплементарные транзисторы в корпусах TO-220 при естественном воздушном охлаждении допускают рассеяние мощности до 2 Вт, в то время как в моей схеме при нагрузке 8 Ом и питании 21 В на них выделяется максимум 1.3 В. Технически тут все нормально, однако транзисторы настолько горячи, что до них невозможно дотронуться. Поэтому, все же было бы неплохо воспользоваться небольшими навесными радиаторами с пружинными зажимами. При 8-омном динамике и напряжениях питания менее 18 В теплоотводы не нужны. Максимальная мощность, отдаваемая моим прототипом, аппроксимируется следующим выражением, полученным на основании эмпирических данных:
Используя эту формулу, вы можете определить, что мой прототип при питании напряжением 9 В отдает в нагрузку 8 Ом респектабельные 350 мВт. Это совсем немало для небольших радио проектов. На другом полюсе – при напряжении питания 21 В и нагрузке 8 Ом – формула предсказывает мощность 2.5 Вт, и это ровно то, что я измерил в точке начала ограничения. В этом тесте я использовал синусоидальный сигнал частотой 1 кГц.
Как ни странно, похоже, что своей устойчивостью схема обязана низкой граничной частоте силовых транзисторов. Я пробовал использовать более быстрые транзисторы (44H11 и 45H11), но получил возбуждение вблизи 700 кГц, несмотря на то, что SPICE моделирование предсказывало противоположное! Подозреваю, что более высокочастотные транзисторы просто не успевали внести дополнительный фазовый сдвиг вблизи частоты единичного усиления ОУ LM358 (1 МГц). (Это не более чем мое предположение). Выбор намного более быстрых транзисторов, таких как 2N2219 и 2N2905, возвращал схеме устойчивость, скорее всего потому, что присущий LM358 спад уже наступал к тому времени, когда транзисторы начинали сдвигать фазу. В этом случае результаты находились в согласии со SPICE. SPICE предупреждает, что совсем медленные транзисторы, такие как старинные 2N3055, будут еще более неустойчивыми. Одним словом, нужно экспериментировать!
При напряжении питания Vcc ниже 12 В рассеиваемая транзистором мощность становится меньше 350 мВт, и многие малосигнальные приборы будут хорошо работать без теплоотвода.
Характеристики аналогов
По datasheet LM358 и ее аналогам можно узнать следующие характеристики:
- LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
- LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
- LM358 – температура 0…+70, напряжение – 3…32В.
В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.
В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ
А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.
Регулировка коэффициента усиления
В прошлой конструкции имеется один недостаток – нет возможности произвести регулировку коэффициента усиления. Причина – сложность реализации, ведь нужно использовать сразу два переменных резистора. Но если вдруг возникла необходимость проводить регулировку коэффициента, можно использовать схему конструкции на трех операционниках:
Здесь корректировка происходит при помощи переменного резистора R2. Обязательно нужно учесть, чтобы были выполнены такие равенства:
- R3=R1.
- R4=R5=R6=R7.
В этом случае k=(1+2*R1/R2).
Напряжение на выходе усилителя U(out)=(1+2*R1/R2)*(Uin1-Uin2).
Какой операционный усилитель использовать
Первые два ОУ должны быть пригодны для аудио приложений. Таковыми являются MC33182, LM833 и многие другие. Если где-нибудь в техническом описании микросхемы промелькнут слова «аудио» или «искажения», скорее всего, это будет хороший выбор. 🙂 Помните, что многие современные операционные усилители имеют узкий диапазон допустимых напряжений питания! Коэффициент усиления в каждом из этих первых двух каскадов установлен равным всего 34, поэтому здесь довольно хорошо будут работать даже более медленные ОУ, однако следите за тем, чтобы произведение их усиления на полосу пропускания равнялось хотя бы 1 МГц. У некоторых операционных усилителей, прекрасных во всех отношениях, размах выходного напряжения недостаточен для этой схемы, выходной каскад которой не имеет усиления. Меньшая амплитуда на выходе IC1b означает снижение максимальной мощности, но впрочем, большого значения это обычно не имеет. Не пытайтесь использовать ОУ LM358 в первых двух каскадах; в режиме усилителя напряжения эта микросхема создаст неприятную проблему переходных искажений.
Для выходного каскада был выбран операционный усилитель LM358. При попытках использовать любые другие микросхемы я сталкивался с какими-нибудь трудностями. Первоначально я брал более быстрые ОУ, и на 8-омном эквиваленте нагрузки они показывали хорошие результаты, однако реактивность некоторых реальных громкоговорителей вызывала возбуждение схемы. Небольшие искажения, вносимые LM358, видны как очень слабое дрожание вблизи точки пересечения нуля на частоте в несколько килогерц, однако уровень результирующих гармоник находится за пределами человеческого слуха. При использовании более быстрых ОУ фазовый сдвиг в транзисторах TIP31 и TIP32 приводил к неустойчивости схемы.
Я временно снижал усиление первых каскадов, шунтируя два резистора 33 кОм резисторами 1 кОм. С помощью анализатора нелинейных искажений я измерил, что суммарный уровень гармоник при напряжении питания от 15 В до 18 В и выходной мощности, близкой к максимальной, равен 0.16%. Для LM358 это совсем неплохо! При сопротивлении нагрузки 16 Ом и напряжении питания 18 В искажения снижались до 0.1%. Замена транзисторов на 2N2219 и 2N2905 привела к росту искажений до 0.2% при питании 12 В.
Применение
Область применения LM358 — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.
Типичное применение операционного усилителя в качестве инвертирующего усилителя. Этот усилитель принимает положительное напряжение на входе и преобразует его в отрицательное той же величины. Таким же образом он преобразует отрицательное напряжение в положительное.
Применение — схема включения
Напряжение питания должно быть больше чем диапазоны входного и выходного напряжения сигнала. Например если будет усиливаться сигнал от ±0.5 В до ±1.8 В, напряжения питания ±12 В будет достаточно.
Требуемый коэффициент усиления для инвертирующего усилителя рассчитывается по формулам (1) и (2):
Av=Vout/Vin (1)
Например Av=1.8/-0.5=-3.6 (2)
После того как определен коэффициент усиления, выбираются значения RI или RF. Выбирать значение сопротивления желательно в кОм, так как схема будет использовать токи в мА. Это гарантирует, что не будет потребляться слишком много тока. Для этого примера выберем RI=10 кОм, что дает RF=36 кОм. RF рассчитывается по формуле (3): Av=-RF/RI.
Входное и выходное напряжения на инвертирующем усилителе
Особенности операционного усилителя
Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:
- Крайне низкая цена элемента.
- При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
- Может питаться как от однополярного источника, так и от двухполярного.
- Питание может происходить от источника, напряжение которого 3…32В. Это позволяет использовать практически любой блок питания.
- На выходе сигнал нарастает со скоростью 0,6 В/мкс.
- Максимальный потребляемый ток не превышает 0,7 мА.
- Напряжение смещения на входе не более 0,2 мВ.
Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители
С какими проблемами я столкнулся
В этой схеме много усиления собрано в небольшом объеме и, что еще хуже, есть много тока, идущего через выходной каскад. Операционные усилители довольно хорошо подавляют обратную связь, создаваемую помехами по шинам питания и земли, но, тем не менее, эта обратная связь может создавать проблемы устойчивости. Провода от источника питания подключайте к схеме вблизи выходных транзисторов. Провод «земли» припаяйте возле точки соединения трех конденсаторов 10 мкФ и резистора 330 кОм
Обратите также внимание на входной фильтр 1 кОм/10 мкФ. Мощности, потребляемой усилителем, достаточно для небольшого проседания Vcc, и небольшая часть возникающей в связи с этим помехи, проникая на вход, приводит к генерации или, в моем случае, к загадочному падению входного импеданса
Небольшой RC фильтр эту обратную связь устраняет. Снизить усиление схемы вы можете, уменьшив сопротивления резисторов 33 кОм, или ограничившись только одним входным каскадом. Дополнительное усиление можно будет получить с помощью внешней схемы.
Помимо этого, вы можете столкнуться с проблемами устойчивости, связанными с выбором ОУ и транзисторов, о которых говорилось выше, поэтому было бы неплохо воспользоваться осциллографом и убедиться, что усилитель работает правильно.
Стабилизированный источник питания не является абсолютно необходимым для этой схемы, но, как минимум, нужно использовать конденсатор очень большой емкости, такой, как показанный на схеме конденсатор 2200 мкФ. Трехвыводной стабилизатор обеспечит некоторую дополнительную степень защиты транзисторов в случае короткого замыкания выхода на землю.
Статус
LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Статус продукта | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | Снят с производства | В производстве | В производстве | В производстве | Снят с производства | В производстве | В производстве | В производстве | В производстве |
Доступность образцов у производителя | Нет | Да | Да | Нет | Нет | Нет | Нет | Да | Нет | Нет | Да | Нет | Нет | Нет | Нет | Нет | Да | Нет | Нет | Нет | Нет |
Чего хорошего в этом усилителе
Существуют микросхемы аудио усилителей, работающие не хуже, чем этот проект. Однако в предлагаемой схеме использованы детали, которые всегда есть под рукой у большинства радиолюбителей. Усилитель работает в широком диапазоне напряжений питания, а его ток покоя легко изменить в соответствии с требованиями конкретного приложения.
Питание напряжением 9 В делает эту схему прекрасным усилителем для небольших проектов. При замене транзисторов на 2N4401 и 2N4403 получается усилитель, похожий на популярный LM386, однако с регулируемым током покоя и несоизмеримо меньшими искажениями на полной мощности.
Подключив электрогитару, я получил отличный репетиционный усилитель! При питании 18 В и с хорошими динамиками он звучит удивительно громко и чисто. Гитаре его усиления более чем достаточно. Для регулировки громкости параллельно входу я добавил резистор, подключив его движок через конденсатор 1 мкФ. Сопротивление этого потенциометра изменяет входной импеданс усилителя. Хорошо подойдет потенциометр 10 кОм с обратной логарифмической зависимостью характеристики.
Сердцевиной проекта является выходной каскад, а предварительный усилитель может быть и другим. Только не забывайте, что для получения максимальной мощности размах напряжения должен быть близок к шинам питания, так как выходной каскад не имеет усиления по напряжению.
Схема неинвертирующего усилителя
Описание схемы:
- На плюсовой вход подается сигнал.
- К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
- Второй резистор соединен с общим проводом.
- Точка соединения резисторов подключается к минусовому входу.
Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.
Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.
Datasheets
ProductFolder OrderNow Support &Community Tools &Software TechnicalDocuments LM158, LM158A, LM258, LM258ALM358, LM358A, LM2904, LM2904VSLOS068U – JUNE 1976 – REVISED JANUARY 2017 LM358, LM258, LM158, LM2904 Dual Operational Amplifiers1 Features 2 Applications 1 Wide Supply Ranges– Single Supply: 3 V to 32 V(26 V for LM2904)– Dual Supplies: В±1.5 V to В±16 V(В±13 V for LM2904)Low Supply-Current Drain, Independent of SupplyVoltage: 0.7 mA TypicalWide Unity Gain Bandwidth: 0.7 MHzCommon-Mode Input Voltage Range IncludesGround, Allowing Direct Sensing Near GroundLow Input Bias and Offset Parameters– Input Offset Voltage: 3 mV TypicalA Versions: 2 mV Typical– Input Offset Current: 2 nA Typical– Input Bias Current: 20 nA Typical …
В каких корпусах выпускаются микросхемы
Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.
Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа
Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину