Содержание
Как сделать двухполярное питание?
Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.
Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число – это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника – нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.
Критерии выбора
Какой фирмы лучше купить, зависит от сферы использования инструмента. Популярные модели могут использоваться как радиолюбителями для выполнения ежедневных задач, так и при проведении высокоточных измерений и испытаний на промышленных предприятиях. Продукция используется там, где присутствует радиотехника и электроника, то есть повсеместно. Основные направления использования:
- Осуществление контроля за качеством элементов радиотехники.
- Проведение тестирования электронных агрегатов и схем.
- Тестирование контрольно-измерительных приборов.
- При производстве и последующем ремонте радиотехники.
- В процессе конструирования, проектирования и испытания аппаратуры радиоэлектронного вида.
- Применения как источника питания.
- Использование в учебном процессе при проведении лабораторных исследований.
- В период моделирования физических и электрических процессов.
- С целью эмуляции функционирования определенного оборудования.
В зависимости от возникшей необходимости и появляется вопрос, какой аппарат лучше купить и у какого производителя. Как выбрать, чтобы не ошибиться? Желательно предварительно изучить обзор предлагаемых моделей, ознакомиться с отзывами, уточнить в отношении выпускаемых новинок
По мнению покупателей, немаловажное значение имеет материал изготовления. От этого напрямую зависит срок службы прибора и его эффективность
Можно ознакомиться с рейтингом популярных моделей, как недорогих, так и по существенной стоимости.
Особенности выбора
В процессе выбора стоит обращать внимание та такие характеристики:
- рабочие параметры;
- размеры;
- количество и мощность выходных каналов;
- защитные функции или их отсутствие;
- достоинства и недостатки;
- средняя цена товара.
Чтобы устройство выполняло возложенные на него задачи, необходимо обратить особое внимание на технические характеристики:
- Нестабильный показатель в питающей сети, если происходит изменение переменного тока.
- Показатель шумности в процессе эксплуатации.
- Временной отрезок при переходе к начальным характеристикам при изменении тока потребителя.
- Качественность измеренных параметров и наличие погрешности.
- Разрешение – возможность выставления шага установки показателей на выходе.
- Управленческий интерфейс.
- Как компенсируются потери, если произвести подключение к четырехпроводной схеме, с целью управления элементами, осуществляющими регулировку выходного потока с использованием измерительных проводов, чтобы компенсировать потерю в питающей сети.
Есть и умельцы, которые в состоянии собрать ЛБП своими руками в домашних условиях. Главное – правильно выбрать схему. Самостоятельно можно изготовить простой линейный блок питания с регулировкой потоков от 1,3 до 30 В, с регулировкой от 0 до 5 А. Получится почти универсальное устройство, которое будет функционировать в режиме стабилизации. При возникновении необходимости можно запитать чувствительную схему или зарядить аккумулятор. Как сделать ту или иную операцию, подскажет пошаговая инструкция, изложенная в интернете.
Аналоги на Алиэкспресс
Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.
Ссылка на этот кит-набор здесь.
Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:
Посмотреть можно по этой ссылке.
Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:
Вот ссылка.
Также неплохо было бы доработать этот блок питания ампервольтметром
который также можно купить на Али здесь.
С трансформатором и корпусом уже будет подороже:
Вот так он будет выглядеть при сборке
Глянуть его можно по этой ссылке. Может быть найдете подешевле.
А лучше вообще не заморачиваться и взять готовый лабораторный мощный блок питания со всеми прибамбасами:
Выбирайте на ваш вкус и цвет!
Лабораторный блок питания 12 вольт своими руками
Привет всем самоделкиным. Многие радиолюбители знают, что блок питания это дорогостоящая часть всей электроники и зачастую приобрести хороший блок питания нет возможности, но у каждого начинающего разбираться в радиоделе есть старый компьютерный блок, который уже давно завалялся и не используется. В этой статье я расскажу как сделать лабораторный блок питания для различных приспособлений, таких ,например, как усилитель. Для начала необходимо определиться, что понадобиться для сборки, это: * Сам компьютерный блок, мощность моего была 350 ватт, чего хватит на все с запасом. * Фанера, у меня таковой нашлось 4 отрезка. * Электролобзик. * Отвертки. * Паяльник и паяльные принадлежности. * Дрель. * Наждачная бумага, зернистости покрупнее. * Гвозди, я предпочел гвозди с мелкой шляпкой. * Резиновые пробки, добытые из химических пробирок.
Когда все необходимое есть, можно приступать к разборке компьютерного блока питания.
Сначала открутим верхние болты, которые держат крышку.
Открутив их, переходим к четырем болтам на кулере. После этого освободим плату от корпуса, там тоже есть болты, в моем же случае еще затаился один черный болтик по середине, который я поначалу и не заметил.
Также отпаиваем провода с включателя.
Теперь плата блока легко вынимается, а родной корпус нам уже не пригодиться.
Следующим, что мы уберем из блока будет куча проводов, поскольку нам нужны будут всего 3 из них, это желтый(12 В+) и синий(-) и зеленый для включения.
Для того чтобы блок включился зеленый проводок запаиваем к месту скопления черных проводов.
А теперь почистим все от пыли, кулер почистить так не удалось, его я разобрал и как следует промазал солидолом.
Перед тем как отпилить переднюю часть отметим на ней место под наш кулер, будет он прямо по class=»aligncenter» width=»1200″ height=»1600″ Обводим карандашом и просверливаем две дырки, расстояние между ними делаем около 2 мм, после этого расшатываем отверстие убирая тем самым перегородку, чтобы запустить пилку электролобзика.
Зашлифовываем посадочное место кулера.
Примеряем, сидит он там хорошо).
Мелким сверлом проделываем четыре отверстия под болты для закрепления кулера. Вот теперь можно и отпилить заготовку передней части. Передняя, так сказать самая главная часть блока готова, по аналогии вырезаем заднюю стенку.
Примеряем стенки, выглядит неплохо, дело за боковыми крышками.
Примерив под ровным углом боковую стенку, намечаем место распила уголком. Боковая стенка готова, понадобиться еще одна такая же. Просто обведем предыдущую.
Под шнур 220 В делаем штекер, тот же, что и был в родном корпусе, его нам нужно разместить в передней части блока. Выпиливаем тем же лобзиком, готово. Затягиваем штекер-вилку двумя штатными болтами. Проделав глубокие отверстия в передней панели под болты крепим кулер. Посмотрим, как все это будет выглядеть, вроде неплохо выглядит, конечно я не дизайнер).
Прибиваем нижнюю и переднюю стороны нашего блока на два гвоздя с мелкой шляпкой.
Так как наш блок будет включаться и выключаться, то ему так же необходим включатель, его я разместил рядом с штекером под вилку. Проделываем под включатель место, тут главное не переборщить, тогда он просто будет болтаться, что не очень хорошо.
Включатель сел плотно и не люфтит.
С установленным кулером передняя панель выглядит так. Так как задняя панель должна иметь вентиляционных выход, то с помощью лобзика делаем овальный продув.
Для подключения различных устройств, которые будут использоваться с эти блоком нужны клеммники, их я нашел из школьного резистора. С обратной стороны затягивается все с помощью гайки и прижимается с ее помощью пластинка с залуженным контактом.
Понадобилось два таких клеммника, один идет на плюс питания, другой на минус. А так выглядит передняя панель с наружной стороны.
Приложив заднюю панель, прибиваем ее к задней части с уже закрепленной передней панелькой.
Так как изначально я не продумал то, что провода подключения 220 В в родном корпусе были короткие, поэтому пришлось по ходу дела заменить их на более длинные.
Один провод я припаял к штекеру, а другой через включатель.
Прикручиваем плату на четыре болтика.
Передняя панель теперь оборудована электроникой, поэтому осталось сделать только верхушку и закрепить боковые стороны. По аналогии с нижней выпиливаем и верхнюю крышку. Фиксируем ее на четыре гвоздя по краям.
Заколачиваем две боковые крышки, так же на 4 гвоздя.
На этом лабораторный блок питания готов, с его помощью можно слушать автомобильную магнитолу, проверять на работоспособность лампочки, питать автоусилитель. Всем удачных самоделок и интересных идей.
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Схема блок питания на tl494 с регулировкой напряжения и тока
Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока.
Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.
Составные части импульсного блок питания на tl494
Блок питания можно разделить на 3 части:
Внутренний блок питания
Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.
2 Блок управления.
Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.
Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока.
Резисторы R11 и R12 можно использовать многооборотные.
Блок управления можно собрать на отдельной плате.
Печатная плата блока управления
3 Силовая часть
Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.
Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.
Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.
Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.
Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.
Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.
Схема блок питания на tl494 с регулировкой напряжения и тока
Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:
Внешний вид готового блока питания
Делаем шунт
Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нем сообщает ШИМ, как он заряжается током — выходным сигналом источника питания. Например, сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А, то напряжение на нем будет:
U = I * R = 10 * 0,05 = 0,5 (Вольт)
Про манганиновый шунт писать не буду, так как не покупал и нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, чтобы получить шунт. Понятно, что лучше использовать манганин, но все же он работает более чем обычно.
Простейший самодельный блок питания
Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:
- Трансформатор с двумя обмотками (первичной — для подключения к сети, вторичной — для подключения потребителей).
- Один или четыре диода для выпрямления переменного тока.
- Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
- Соединительные провода.
В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале — во втором случае меньше пульсаций.
Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода — сила тока (чем больше толщина, тем больше ток).
Регулировка напряжения в стиле ретро
Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения – 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской.
Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее:
- Определить, какое напряжение собирается одним витком обмотки. Для удобства намотайте 10 витков, включите трансформатор в сеть и проведите замер напряжения. Полученное значение разделите на 10.
- Проведите намотку вторичной обмотки, предварительно отключив трансформатор от сети. Если у вас получилось, что один виток собирает 0,5 В, то для получения 5 В вам требуется сделать отвод от 10-го витка. И по подобной схеме делаете отводы для остальных стандартных значений напряжений.
Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное – не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства.
РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ С СИГНАЛИЗАЦИЕЙ ПЕРЕГРУЗКИ
Звуковая сигнализация позволяет пользователю быстро среагировать на аварийную ситуацию, если при экспериментах с различной радиоэлектронной аппаратурой возникла перегрузка источника питания. Схема источника питания с звуковым сигнализатором превышения потребления тока показана на рисунке.
Выпрямитель на диодах VD1—VD4 питается от трансформатора, вторичная обметка которого рассчитана на напряжение 18 В при токе нагрузки не менее 1 А, Регулируемый стабилизатор напряжения выполнен на транзисторах VT2 — VT5 по известной схеме. Переменным резистором R3 на выходе стабилизатора может быть установлено напряжение от 0 до +15 В.
Как изготовить шасси для блока питания?
Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения.
Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку – пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный.
Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений.
Схемы блоков питания
Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:
- однополярный;
- двуполярный;
- лабораторный импульсный.
Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).
Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична
Импульсный трансформатор
Простой лабораторный
Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:
- понижающий трансформатор Tr ( 220/12…30 В);
- диодный мост Dr для выпрямления пониженного переменного напряжения;
- электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
- потенциометр для регулировки выходного напряжения Р1 5 кОм;
- сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
- два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
- для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.
В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.
Схема простого БП
К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.
Печатная плата простого БП
Двухполярный источник питания
Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.
Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения
Двухполярный ИП на транзисторах
Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.
Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.
Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).
Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.
Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.
Лабораторный импульсный бп
Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.
Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.
Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.
Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.
Схема импульсного блока питания
Данный источник питания собран на микросхеме TL494.
Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности
Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.
Особенности сборки схемы:
- для минимизации потерь при выпрямлении используют диоды Шоттки;
- ESR электролитов в фильтрах на выходе должен быть как можно ниже;
- дроссель L6 от старых БП применяют без изменения обмоток;
- дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
- Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
- для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.
Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.
Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится
Чем отличается от трансформаторного блока питания
Блок-схемы трансформаторного и импульсного блоков питания
Как работает трансформаторный блок питания
В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.
Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации
Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.
Устройство импульсного блока питания и его принцип работы
В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».
Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность
Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц
Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.
Блок-схема ИИП с формами напряжения в ключевых точках
Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).
На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.
Достоинства и недостатки импульсных блоков питания
Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.
Размер тоже имеет значение
Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.
Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.
Как все работает
Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2
Важно учесть, что именно он оказывает влияние на качество выходного сигнала
Лабораторный БП на Ардуино
Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.
Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.
Регулируемый блок питания лабораторный на lm317 (схема)
В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.
В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.
Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.
С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.
Схематическое изображение функционала
Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.